Study for Membrane Fouling Monitering Using Image Extraction by Visible Light Irradiation

가시광선 조사에 의한 이미지 추출법을 이용한 막 오염 모니터링 연구

  • Park, Ah-Rum-I (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Seo, Mi-Rae (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Nam, Seung-Eun (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Beom-Sik (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, Ho-Bum (Department of Energy Engineering, Hanyang University) ;
  • Kim, In-Chul (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, You-In (Environment & Resources Research Center, Korea Research Institute of Chemical Technology)
  • 박아름이 (한국화학연구원 환경자원연구센터) ;
  • 서미래 (한국화학연구원 환경자원연구센터) ;
  • 남승은 (한국화학연구원 환경자원연구센터) ;
  • 김범식 (한국화학연구원 환경자원연구센터) ;
  • 박호범 (한양대학교 에너지공학과) ;
  • 김인철 (한국화학연구원 환경자원연구센터) ;
  • 박유인 (한국화학연구원 환경자원연구센터)
  • Received : 2011.05.21
  • Accepted : 2011.06.21
  • Published : 2011.06.30

Abstract

Membrane fouling is formed due to pore blocking and cake formation by suspended material or contaminant in the membrane boundary layer. Membrane fouling is main obstacle for the wider application of industrial water treatment. The objective of this paper is to study the direct monitoring technique for the measuring the membrane fouling in real time. We investigated the extracted image of R, G, and B by visible light irradiation of 360 nm wavelength to measure the membrane fouling in real time by transparent foulant. The intensity of B of 400~499 nm wavelength range was stronger than that of R and G. The fluorescence image extraction analysis appeared to be a very attractive technique for monitoring the membrane fouling in real time.

분리막을 이용한 수처리 공정에서 유입 수에 함유된 부유물질이나 기타 오염물질이 막 표면 또는 내부에 축적 흡착 등의 막 오염현상으로 인해 막 성능 감소와 함께 막 분리 공정에 큰 영향을 미치게 된다. 본 연구에서는 막 표면에서의 막 오염현상을 실시간으로 모니터링 할 수 있는 기술을 연구하였다. 투명한 오염물질에 의한 분리막 표면 오염을 측정하기 위해 막 표면에 360 nm 파장의 가시광선을 조사하여 이미지를 R. G. B 값으로 추출하여 막의 오염현상을 실시간으로 모니터링 하였다. 추출된 이미지 중 400~499 nm 파장영역인 B 값이 가장 강도가 강하게 나타났다. 막 오염정도의 변화를 이미지의 강도 차이로 관찰함으로써 실시간 분석이 가능함을 확인하였다.

Keywords

References

  1. 이원태, "막오염 제이분야의 연구동향", DICER Techinfo Part I., 6(11), 174 (2007).
  2. E. Matthiasson and B. Sivik, "Concentration polarization and fouling", Desalination, 35, 59 (1980). https://doi.org/10.1016/S0011-9164(00)88604-X
  3. A. Drews, C. H. Lee, and M. Kraume, "Membrane fouling - a review on the role of EPS", Desalination, 200, 186 (2006). https://doi.org/10.1016/j.desal.2006.03.290
  4. J. G. Choi, T. H. Bae, J. H. Kim, T. M. Tak, and A. A. Randall, "The behavior of membrane fouling initiation on the crossflow membrane bioreactor system", J. Membr. Sci., 203(1), 103 (2002). https://doi.org/10.1016/S0376-7388(01)00790-6
  5. G. Zhang, S. Ji, X. Gao, and Z. Liu, "Adworptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes", J. Membr. Sci., 309(1), 28 (2008). https://doi.org/10.1016/j.memsci.2007.10.012
  6. AWWA membrane technology research committee report: "Recent advances and research needs in membrane fouling", J. AWWA, 97(8), 79 (2005). https://doi.org/10.1002/j.1551-8833.2005.tb07452.x
  7. American water works association, "Water treatment membrane processes", McGraw-Hill, New York, (1996).
  8. J. C. Chen, Q. Li, and M. Elimelech, "In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration", Adv. Colloid Interface Sci., 107, 83 (2004). https://doi.org/10.1016/j.cis.2003.10.018
  9. R. S. Faibish, M. Elimelech, and Y. Cohen, "Effect of interparticle electrostatic double layer interations on permeate flux decline in crossflow membrane filtration of colloidal suspensions-an experimental investigation", J. Colloid Interface Sci., 204, 77 (1998). https://doi.org/10.1006/jcis.1998.5563
  10. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, "Luminescent quantum dots for multiplexed biological detection and imaging", Curr. Opin. Biotechnol., 13, 40 (2002). https://doi.org/10.1016/S0958-1669(02)00282-3
  11. M. Y. Han, X. Gao, J. Z. Su, and S. M. Nle, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules", Nat. Biotechnol., 19, 631 (2001). https://doi.org/10.1038/90228
  12. T. Eighmy, D. Maratea, and P. L. Bishop, "Electron microscopic examination of wastewater biofilm formation and structural components", Appl. Environ. Microbiol., 45(6), 1921 (1983).
  13. E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, "Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticels", J. Am. Chem. Soc., 127(10), 3270 (2005). https://doi.org/10.1021/ja0433323