DOI QR코드

DOI QR Code

IEEE 802.11b DCF 무선랜 환경에서 휴지 기간과 전송 오버헤드를 고려한 가용대역폭 측정 방법

Available Bandwidth Measurement Method Considering Idle Period and Transmission Overheads in IEEE 802.11b DCF Wireless LANs

  • 구혜림 (아주대학교 일반대학원 컴퓨터공학과) ;
  • 하상용 (한국정보화진흥원) ;
  • 류기열 (아주대학교 정보컴퓨터공학부) ;
  • 노병희 (아주대학교 정보통신전문대학원)
  • 투고 : 2011.03.25
  • 심사 : 2011.06.23
  • 발행 : 2011.07.30

초록

IEEE 802.11 DCF 모드는 QoS 제공 기능을 포함하고 있지 않으므로, 무선랜에서 실시간 멀티미디어 서비스들을 제공하는 것이 어렵다. 본 논문에서는 IEEE 802.11b DCF 환경에서 실시간 멀티미디어 서비스 제공의 기반이 되는 가용대역폭 측정을 위한 효과적인 방법을 제안한다. 제안 방법은 매 측정 기간마다 총 채널 휴지 시간과 충돌 확률을 측정한다. 그리고 이들 측정값들과 전송과정에서의 MAC과 PHY 계층에서의 오버헤드를 고려하여, 가용대역폭을 측정한다. 실험은 OPNET을 사용하여 수행되었으며, 실험 결과는 제안 방법에서 측정한 가용대역폭이 기존의 방법들 보다 더 정확한 결과값을 제공함을 보여준다.

The lack of QoS (Quality of Service) support functionalities in IEEE 802.11 DCF mode makes it difficult to provide real-time multimedia services in WLANs. In this paper, we propose an effective available bandwidth measurement method in IEEE 802.11b DCF environments. The proposed method measures the total channel idle time and the collision probability during each measurement period. Then, the available bandwidth is calculated by considering those measured information and the transmission overheads at MAC and PRY layers. The performances of the proposed method are evaluated using OPNET simulator. The simulation results show that the proposed method provides more exact results than existing comparable schemes.

키워드

참고문헌

  1. Y. Xiao, H. Li, and S. Choi, "Protection and gaurantee for voice and video traffic in IEEE 802.11e wireless LANs", In Proceeding of IEEE INFOCOM'04, Hong Kong, March 2004.
  2. IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2007
  3. V. J. Riberio, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell, "pathChirp: Efficient Available Bandwidth Estimation for Network Paths," Passive and Active Measurements (PAM) Conference'2003, Apr. 2003
  4. M. Jain and C. Dovrolis, "Pathload: a Measurement Tool for End-to-End Available Bandwidth," Passive and Active Measurements (PAM) Conference'2004, Mar. 2002
  5. N. Hu and P. Steenkiste, "Evaluation and Characterization of Available Bandwidth Probing Techniques," IEEE Journal on Selected Areas in Communications, Vol.21, No.6, August 2003.
  6. G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," IEEE Journal on Selected Areas in Communications, Vol.18, No.3, 2000, pp.535-547. https://doi.org/10.1109/49.840210
  7. D. Wu, and R. Negi, "Effective Capacity: a Wireless Link Model for Support of Quality of Service," IEEE Tr. Wireless Communications, Vol.2, No.4, 2003, pp.630-643.
  8. R. de. Renesse, V. Friderikos, and A.H. Aghvami, "Cross-layer cooperation for accurate admission control decisions in mobile ad hoc networks," IET Communications, Vol.1, No.4, Apr. 2007, pp.577-586. https://doi.org/10.1049/iet-com:20060243
  9. C. Sarr, C. Chaudet, G. Chelius, and I.G. Lassous, "Bandwidth Estimation for IEEE 802.11-based Ad hoc Networks," IEEE Tr. Mobile Computing, Vol.7, No.10, 2008, pp. 1228-1241. https://doi.org/10.1109/TMC.2008.41
  10. S. Tursunova, K. Inoyatov, and Y. Kim, "Cognitive Passive Estimation of Available Bandwidth (cPEAB) in Overlapped IEEE 802.11 WiFi WLANs," IEEE Network Operations and Management Symposium (NOMS)' 2010
  11. H. Park, B. Roh, "Accurate Passive Bandwidth Estimation (APBE) in IEEE 802.11 Wireless LANs," IEEE CUTE'2010, Dec. 2010
  12. D. Qiao, S. Choi, K. G. Shin, "Goodput Analysis and Link Adaptation for IEEE 802.11a Wireless LANs," IEEE Tr. Mobile Computing, Vol.1, No.4, pp.278-292, Oct./Dec. 2002 https://doi.org/10.1109/TMC.2002.1175541
  13. OPNET, http://www.opnet.com
  14. AT&T, Lucent, Posdata and Telsima, "Revised Release 1.5 QoS Requirements," WiMAX Forum SPWG, Aug. 2006