DOI QR코드

DOI QR Code

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A. (Department of Industrial Engineering and Management, Jerusalem College of Technology) ;
  • Yang, F. (J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev) ;
  • Shandalov, S. (J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev) ;
  • Raveh, A. (The school of business administration, The Hebrew University) ;
  • Oron, G. (J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev)
  • 투고 : 2009.12.21
  • 심사 : 2010.10.15
  • 발행 : 2011.04.25

초록

This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

키워드

참고문헌

  1. Abegglen, C., Ospelt, M. and Siegrist, H. (2008), "Biological nutrient removal in a small-scale MBR treating household wastewater", Water Res., 42(1-2), 338-346. https://doi.org/10.1016/j.watres.2007.07.020
  2. Adler, N. and Raveh, A. (2008), "Presenting DEA graphically", Omega, 36(5), 715-729. https://doi.org/10.1016/j.omega.2006.02.006
  3. Agashichev, S.P. (2009), "Modeling the influence of temperature on gel-enhanced concentration polarization in reverse osmosis", Desalination, 236(1-3), 252-258. https://doi.org/10.1016/j.desal.2007.10.074
  4. APHA (1998), Standard methods for the examination of water and wastewater, 20th edition, Washington D.C.
  5. Bersillon, J. and Thompson, M.A. (1998), In Situ Evaluation and Operation in Water Treatment Membrane Processes, McGraw-Hill, Madrid.
  6. Beyer, M., Lohrengel, B. and Nghiem L.D. (2010), "Membrane fouling and chemical cleaning in water recycling applications", Desalination, 250(3), 997-981. https://doi.org/10.1016/j.desal.2009.09.089
  7. Bick, A., Plazas, J.P. and Oron, G. (2005), "Immersed membrane bioreactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm", Water Sci. Technol., 51(10), 327-334.
  8. Bick, A., Yang, F., Shandalov, S. and Oron, G. (2007), "Data envelopment analysis for assessing optimal operation of an immersed membrane bioreactor equipped with a draft tube for domestic wastewater reclamation", Desalination, 204(1-3), 17-23. https://doi.org/10.1016/j.desal.2006.02.029
  9. Bick, A., Plazas, J.P. Yang, F., Hagin, J. and Oron, G. (2009), "Immersed Membrane BioReactor (IMBR) for treatment of combined domestic and dairy wastewater in an isolated farm: an exploratory case study implementing the Facet Analysis (FA)", Desalination, 249, 1217-1222. https://doi.org/10.1016/j.desal.2009.06.035
  10. Bottino, A., Capannelli, G., Comite, A., Ferrari, F., Firpo, R. and Venzano, S. (2009), "Membrane technologies for water treatment and agroindustrial sectors", C. R. Chimie, 12(8), 882-888. https://doi.org/10.1016/j.crci.2008.06.021
  11. Bravata, D.M., Shojania, K.G., Olkin, I. and Raveh, A. (2008), "CoPlot: A tool for visualizing multivariate data in medicine", Statist. Med., 27(12), 2234-2247. https://doi.org/10.1002/sim.3078
  12. Chae, S.R., Ahn, Y.T., Kang, S.T. and Shin, H.S. (2006), "Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR)", J. Membrane Sci., 280(1-2), 572-581. https://doi.org/10.1016/j.memsci.2006.02.015
  13. Chang, C.Y. , Chang, J.S., Vigneswaran, S. and Kandasamy, J. (2008), "Pharmaceutical wastewater treatment by membrane bioreactor process - a case study in southern Taiwan", Desalination, 234(1-3), 393-401. https://doi.org/10.1016/j.desal.2007.09.109
  14. Charnes, A., Cooper, W.W. and Rhods, H. (1978), "Measuring the efficiency of decision-making units", Eur. J. Oper. Res., 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
  15. Chen, J.C., Elimelech, M. and Kim, A.S. (2005), "Monte carlo simulation of colloidal membrane filtration: Model development with application to characterization of colloid phase transition", J. Membrane Sci., 255, 291-305. https://doi.org/10.1016/j.memsci.2005.02.004
  16. Chen, Y.C., Lien, H.P. and Tzen G. H. (2010), "Measures and evaluation for environment watershed plans using a novel hybrid MCDM model", Expert Systems with Applications, 37(2), 926-938. https://doi.org/10.1016/j.eswa.2009.04.068
  17. Choi, J.H. and Ng, H.Y. (2008), "Effect of membrane type and material on performance of a submerged membrane bioreactor", Chemosphere, 71(5), 853-859. https://doi.org/10.1016/j.chemosphere.2007.11.029
  18. Cicek, N., Suida, M.T., Ginestet, P. and Audi, J.M. (2002), "Impact of soluble organic compounds on permeate flux in an aerobic membrane bioreactor", J. Envir. Technol., 24(2), 249-256.
  19. Drews, A., Lee, C.H. and Kraume, M. (2006), "Membrane fouling - a review on the role of EPS", Desalination, 200, 186-188. https://doi.org/10.1016/j.desal.2006.03.290
  20. Ferree, M. A. and Shannon, R.D. (2001), "Evaluation of a second derivative uv/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples", Water Res., 35(1), 327-332. https://doi.org/10.1016/S0043-1354(00)00222-0
  21. Germain, E., Stephenson, T. and Pearce, P. (2005), "Biomass characteristics and membrane aeration: toward a better understanding of membrane fouling in submerged membrane bioreactors (MBRs)", Biotech. Bioeng., 90(3), 316-322. https://doi.org/10.1002/bit.20411
  22. Gillerman, L., Bick, A., Buriakovsky, N. and Oron, G. (2006), "Secondary wastewater polishing with ultrafiltration membranes for unrestricated reuse: Fouling and flushing modeling", Environ. Sci. Technol., 40, 6830-6836. https://doi.org/10.1021/es061235z
  23. Guttman, L. (1968), "A general non-metric technique for finding the smallest space for a configuration of points", Psychometrica, 33(4), 479-506.
  24. Jamal Khan, S., Visvanathan, C. and Jegatheesan, V. (2009), "Prediction of membrane fouling in MBR systems using empirically estimated specific cake resistance", Bioresource Tech., 100(23), 6133-6136. https://doi.org/10.1016/j.biortech.2009.06.037
  25. Jiang, T., Kennedy, M.D., Van der Meer, W.G.J., Vanrolleghem, P.A. and Schippers, J.C. (2003), "The role of blocking and cake filtration in MBR fouling", Desalination, 157(1-3), 335-343. https://doi.org/10.1016/S0011-9164(03)00414-4
  26. Jiang, T., Kennedy, M.D., Yoo, C., Nopens, I., Van der Meer, W., Futselaar, H., Schippers, J.C. and Vanrolleghem, P.A. (2007), "Controlling submicron particle deposition in a side-stream membrane bioreactor: A theoretical hydrodynamic modeling approach incorporating energy consumption", J. Membrane Sci., 297(1-2), 141-151. https://doi.org/10.1016/j.memsci.2007.03.033
  27. Joss, A., Keller, E., Alder, A.C., Gobel, A., McArdell, C.S., Ternes, T. and Siegrist, H. (2005), "Removal of pharmaceuticals and fragrances in biological wastewater treatment", Water Res., 39(14), 3139-3152. https://doi.org/10.1016/j.watres.2005.05.031
  28. Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, S.M., Ternes, T.A., Thomsen, A. and Siegrist, H. (2006), "Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme", Water Res., 40(8), 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  29. Koning, J.D., Karabelas, B.A., Salgot, M. and Schafer, A. (2008), "Characterization and assessment of water treatment technologies for reuse", Desalination, 218, 92-104. https://doi.org/10.1016/j.desal.2006.08.024
  30. Le-Clech, P., Chen, V. and Fane, A.G. (2006), "Fouling in membrane bioreactors used in wastewater treatment", J. Membrane Sci., 284(1-2), 17-53. https://doi.org/10.1016/j.memsci.2006.08.019
  31. Leiknes, T. and Odegaard, H. (2007), "The development of a biofilm membrane bioreactor", Desalination, 202(1-3), 135-143. https://doi.org/10.1016/j.desal.2005.12.049
  32. Lesjean, B. and Leiknes, T. (2006), "AMEDEUS and EUROMBRA projects: boosting the development of MBR technologies in Europe", Desalination, 200, 710-711. https://doi.org/10.1016/j.desal.2006.03.510
  33. Lin, S., Hung, C. and Juang, R. (2008), "Applicability of the exponential time dependence of flux decline during dead-end ultrafiltration of binary protein solutions", Chem. Eng. J., 145(2), 211-217. https://doi.org/10.1016/j.cej.2008.04.003
  34. Lipshitz, G. and Raveh, A. (1994), "Applications of the CoPlot method in the study of socioeconomic differences among cities: A basis for a differential development policy", Urban Studies, 31, 123-135. https://doi.org/10.1080/00420989420080071
  35. Macedonio, F., Di Profio, G., Curcio, E. and Drioli, E. (2006), "Integrated membrane systems for seawater desalination", Desalination, 200, 612-614. https://doi.org/10.1016/j.desal.2006.03.432
  36. Marselina, Y., Lifia, A., Le-Clech, R., Stuetz, R.M. and Chen, V. (2009), "Characterisation of membrane fouling deposition and removal by direct observation technique", J. Membrane Sci., 341, 163-161. https://doi.org/10.1016/j.memsci.2009.06.001
  37. Matos, C.T., Fortunato, R., Velizarov, S., Reis, M.A.M, and Crespo, J.O. (2008), "Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: Influence of membrane permselectivity", Water Res., 42(6-7), 1785-1795. https://doi.org/10.1016/j.watres.2007.11.006
  38. McAdam, E.J., Judd, S.J., Cartmell, E. and Jefferson, B. (2007), "Influence of substrate on fouling in anoxic immersed membrane bioreactors", Water Res., 41(17), 3859-3867. https://doi.org/10.1016/j.watres.2007.05.017
  39. Mosqueda-Jimenez, D.B. and Huck, P.M. (2006), "Characterization of membrane foulants in drinking water treatment", Desalination, 198(1-3), 173-182. https://doi.org/10.1016/j.desal.2005.12.025
  40. Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L. and Reis, M.A.M. (2007), "Advances in enhanced biological phosphorus removal: From micro to macro scale", Water Res., 41(11), 2271-2300. https://doi.org/10.1016/j.watres.2007.02.030
  41. Oron, G., Gillerman, L., Buriakovsky, N., Bick, A., Gargir, M., Dolan, Y., Manor, Y., Katz, L. and Hagin, J. (2008), "Membrane technology for advanced wastewater reclamation for sustainable agriculture production", Desalination, 218(1-3), 170-180. https://doi.org/10.1016/j.desal.2006.09.033
  42. Petala, M.D. and Zouboulis, A.I. (2006), "Vibratory shear enhanced processing membrane filtration applied for the removal of natural organic matter from surface waters", J. Membrane Sci., 269(1-2), 1-14. https://doi.org/10.1016/j.memsci.2005.06.013
  43. Pollice, A., Brookes, A., Jefferson, B. and Judd, S. (2005), "Sub-critical flux fouling in membrane bioreactors recent literature", Desalination, 174(3), 221-230. https://doi.org/10.1016/j.desal.2004.09.012
  44. Qin, J.-J., Wai, M.N., Tao, G., Kekre, K.A. and Seah, H. (2007), "Membrane bioreactor study for reclamation of mixed sewage mostly from industrial sources", Sep. Purif. Technol., 53(3), 296-300. https://doi.org/10.1016/j.seppur.2006.08.002
  45. Raveh, A. (2000), "CoPlot: A Graphic display method for geometrical representations of MCDM", Eur. J. Oper. Res., 125(3), 670-678. https://doi.org/10.1016/S0377-2217(99)00276-3
  46. Rieger, L., Thomann, M., Gujer, W. and Siegrist, H. (2005), "Quantifying the uncertainty of on-line sensors at WWTPs during field operation", Water Res., 39(20), 5162-5174. https://doi.org/10.1016/j.watres.2005.09.040
  47. Rodrigues, F., Cavaco Morao, A.L., de Pinho, M.N. and Geraldes, V. (2010), "On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes", J. Membrane Sci., 346, 1-7. https://doi.org/10.1016/j.memsci.2009.08.023
  48. Rossi, L., Krejci, V., Rauch, W., Kreikenbaum, S., Fankhauser, R. and Gujer, W. (2005), "Stochastic modeling of total suspended solids (TSS) in urban areas during rain events", Water Res., 39(17), 4188-4196. https://doi.org/10.1016/j.watres.2005.07.041
  49. Salgot, M. (2008), "Water reclamation, recycling and reuse: implementation issues", Desalination, 218(1-3), 190-197. https://doi.org/10.1016/j.desal.2006.09.035
  50. Schilli, C., Lischeid, G. and Rinklebe, J. (2010), "Which processes prevail?: Analyzing long-term soil solution monitoring data using nonlinear statistics", Geoderma, 158(3-4), 412-420. https://doi.org/10.1016/j.geoderma.2010.06.014
  51. Shon, H.K., Vigneswaran, S. and Snyder, S.A. (2006), "Effluent organic matter (EfOM) in wastewater: constituents, effects and treatment", J. Envir. Sci. Technol., 36(4), 327-374.
  52. Shon, H.K., Vigneswaran, S., Kandasamy, J. and Shim, W.G. (2008), "Ultraflitration of wastewater with pretreatment: evaluation of flux decline models, Des alination, 231(1-3), 332-339.
  53. Song, L., Chen, K.L., Ong, S.L. and Ng, W.J. (2004), "A new normalization method for determination of colloidal fouling potential in membrane processes", J. Colloid Interface Sci., 271(2), 426-433. https://doi.org/10.1016/j.jcis.2003.12.016
  54. Sonicki, Z., Cvitkovic, A., Edwards, K.L., Miletic-Medved, M., Cvoriscec, D., Babus, V. and Jelakovic, B. (2009), "Visual Assessment of Endemic Nephropathy Markers Relationship", Stud. Health Technol. Inform., 150, 836-840.
  55. Sophonsiri, C. and Morgenroth, E. (2004), "Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters", Chemosphere, 55(5), 691-703. https://doi.org/10.1016/j.chemosphere.2003.11.032
  56. Sridang, P.C., Anthony Pottier, A., Wisniewski, C. and Grasmick, A. (2008), "Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment", J. Membrane Sci., 317(1-2), 43-49. https://doi.org/10.1016/j.memsci.2007.11.011
  57. Tan, T.W. and Ng, H.Y. (2008), "Influence of mixed liquor recycle ratio and dissolved oxygen on performance of pre-denitrification submerged membrane bioreactors", Water Res., 42(4-5), 1122-1132. https://doi.org/10.1016/j.watres.2007.08.028
  58. Wenbo, Y., Cicek, N. and Ilg, J. (2006), "State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America", J. Membrane Sci., 270(1-2), 201-211. https://doi.org/10.1016/j.memsci.2005.07.010
  59. Winward, G.P., Avery, L.M., Frazer-Williamsa, R.F., Pidou, M., Jeffrey, P., Stephenson, T. and Jefferson, B. (2008), "A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse", Ecol. Eng., 32(2), 187-197. https://doi.org/10.1016/j.ecoleng.2007.11.001
  60. Yang, F., Bick, A., Shandalov, S. and Oron, G. (2006), "Optimal performance of an immersed membrane bioreactor equipped with a draft tube for domestic wastewater reclamation", Water Sci. Technol., 54(10), 155-162.
  61. Yang, F., Wang, Y., Bick, A., Brenner, A, Ben-David, E. and Oron, G. (2009), "A long-term application of a pilot airlift membrane bioreactor for domestic wastewater treatment", Desal. Water Treatment, 4, 212-217. https://doi.org/10.5004/dwt.2009.378
  62. Zondervan, E., Bakker, S., Nederlof, M. and Roffel, B. (2009), "Taking green anti-fouling strategies in dead-end ultrafiltration to the next level", Chem. Eng. Res. Des., 87(12), 1589-1595. https://doi.org/10.1016/j.cherd.2009.06.004

피인용 문헌

  1. Analysis of membrane bioreactor performance for wastewater treatment using ranking methods 2016, https://doi.org/10.1080/02772248.2016.1257709
  2. Brackish groundwater membrane system design for sustainable irrigation: optimal configuration selection using analytic hierarchy process and multi-dimension scaling vol.2, 2014, https://doi.org/10.3389/fenvs.2014.00056