DOI QR코드

DOI QR Code

Water purification from pesticides by spiral wound nanofiltration membrane

  • Bottino, A. (Dipartimento di Chimica e Chimica Industriale, Universita di Genova) ;
  • Capannelli, G. (Dipartimento di Chimica e Chimica Industriale, Universita di Genova) ;
  • Comite, A. (Dipartimento di Chimica e Chimica Industriale, Universita di Genova) ;
  • Ferrari, F. (Dipartimento di Chimica e Chimica Industriale, Universita di Genova) ;
  • Firpo, R. (Dipartimento di Chimica e Chimica Industriale, Universita di Genova)
  • 투고 : 2010.01.21
  • 심사 : 2010.09.24
  • 발행 : 2011.01.25

초록

A spiral wound nanofiltration (NF) membrane (GE Osmonics, DK 4040F) was used to remove pesticides from water. Several solutions of single pesticides and their mixtures were prepared. The pesticides initial concentration ranged from ca. 50 ng/L (single pesticide) to ca. 700 ng/L (as sum of 14 pesticides) and progressively increased with time since the NF experiments were carried out in a concentration mode up to a Volume Concentration Ratio, VCR = 10. Permeate flux and pesticides retention were evaluated as a function of the Volume Concentration Ratio. The permeate flux did not practically change by varying VCR. Pesticide retention was found to be around 97-98% both in the cases of single pesticide solutions and different mixtures of pollutants, and was not affected by the VCR. Pesticides concentration in permeate samples was found to be lower than the maximum concentration level fixed in European directive.

키워드

참고문헌

  1. Ahmad, A.L., Tan, L.S. and Shukor, S.R. (2008), "Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes", J. Hazard. Mater., 151, 71-77. https://doi.org/10.1016/j.jhazmat.2007.05.047
  2. Asperger, A., Efer, J., Koal, T. and Engewald, W. (2001), "On the signal response of various pesticides in electrospray and atmospheric pressure chemical ionization depending on the flow-rate of eluent applied in liquid chromatography-tandem mass spectrometry", J. Chromatogr. A., 937, 65-72. https://doi.org/10.1016/S0021-9673(01)01296-1
  3. Azejjel, H., del Hoyo, C., Draoui, K., Rodríguez-Cruz, M.S. and Sánchez-Martín, M.J. (2009), "Natural and modified clays from Morocco as sorbents of ionizable herbicides in aqueous medium", Desalination, 249, 1151-1158. https://doi.org/10.1016/j.desal.2009.02.066
  4. Biziuk, M., Przyjazny, A, Czerwinski, J. and Wiergowski, M. (1996), "Occurrence and determination of pesticides in natural and treated waters", J. Chromatogr. A., 754, 103-123. https://doi.org/10.1016/S0021-9673(96)00297-X
  5. Bhattacharya, A. (2006), "Remediation of pesticide-polluted waters through membranes", Sep. Purif. Rev., 35, 1-38. https://doi.org/10.1080/15422110500536151
  6. Boussahel, R., Bouland, S., Moussaoui, K.M. and Montiel, A. (2000), "Removal of pesticide residues in water using the nanofiltration process", Desalination, 132, 205-209. https://doi.org/10.1016/S0011-9164(00)00151-X
  7. Cavaco Morao A.I., Szymczyk A., Fievet P. and Brites Alves A.M. (2010), "Nanofiltration of multi-ionic solutions: prediction of ions transport using the SEDE model", Membrane Water Treatment, 1, 139-158. https://doi.org/10.12989/mwt.2010.1.2.139
  8. Caus, A., Vanderhaegen, S., Braeken, L. and Van der Bruggen, B. (2009), "Integrated nanofiltration cascades with low salt retention for complete removal of pesticides in drinking water production", Desalination, 241, 111-117. https://doi.org/10.1016/j.desal.2008.01.061
  9. Chelme-Ayala, P., El-Din, M.G. and Smith, D.W. (2010), "Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus $H_{2}O_{2}$ advanced oxidation process", Water Res., 44, 2221-2228. https://doi.org/10.1016/j.watres.2009.12.045
  10. Chen, S.S., Taylor, J.S., Mulford, L.A. and Norris, C.D. (2004), "Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes", Desalination, 160, 103-111. https://doi.org/10.1016/S0011-9164(04)90000-8
  11. Dauwe, C. and Sellergren, B. (1996), "Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers", J. Chromatogr. A., 53, 191-200.
  12. European Commission Directive (1998), "98/83/EC related with drinking water quality intended for human consumption", Brussels, Belgium.
  13. Finizio, A., Di Guardo, A., Arnoldi, A., Vighi, M. and Fanelli, R. (1991), "Different approaches for the evaluation of Kow for s-triazine herbicides", Chemosphere, 23, 801-812. https://doi.org/10.1016/0045-6535(91)90084-Q
  14. Gerecke, A.C., Scharer, M., Singer, H.P., Muller, S.R., Schwarzenbach, R.P., Sagesser, R., Ochsenbein, M. andPopow, G. (2002), "Sources of pesticides in surface waters in Switzerland pesticide load through waste watertreatment plants−current situation and reduction potential", Chemosphere, 48, 307-315 https://doi.org/10.1016/S0045-6535(02)00080-2
  15. Garmouma, M., Teilb, M.J., Blanchardb, M. and Chevreuilb, M. (1998), "Spatial and temporal variation of herbcids (triazines and phenylureas) concentrations in the catchment basin of the Marne river (France), Sci. Total Env., 224, 93-107. https://doi.org/10.1016/S0048-9697(98)00326-X
  16. Hu, J.Y. Takako, A. and Magara, Y. (1997), "Evaluation of adsorbability of pesticides in water of powdered activated carbon using octanol-water partition coefficient", Water Sci. Technol., 35, 219-226.
  17. Kimura, K., Amy, G., Drewes, J. and Watanabe, Y. (2003), "Adsorption of hydrophobic compounds onto NF/RO membranes: an artifact leading to overestimation of retention", J. Membrane Sci., 221, 89-101. https://doi.org/10.1016/S0376-7388(03)00248-5
  18. Kiso, Y., Sugiura, Y., Kitao, T. and Nishimura, K. (2001), "Effects of hydrophobicity and molecular size on retention of aromatic pesticides with nanofiltration membranes", J. Membrane Sci., 192, l-10.
  19. Kiso, Y., Mizuno, A., Othman, R.A.A., Jung, Y.J., Kumano, A. and Ariji, A. (2002), "Rejection properties of pesticides with a hollow fiber NF membrane", Desalination, 143, 147-157. https://doi.org/10.1016/S0011-9164(02)00236-9
  20. Konstantinou, I.K., Albanis, T.A., Petrakis, D.E. and Pomonis, P.J. (2000), "Removal of herbicides from aqueous solutions by adsorption on al-pillared clays, Fe${\pm}$Al pillared clays and mesoporous alumina aluminum phosphates", Water Res., 34, 3123-3136. https://doi.org/10.1016/S0043-1354(00)00071-3
  21. Kosutic, K., Furac, L., Sipos, L. and Kunst, B. (2005), "Removal of arsenic and pesticides from drinking water by nanofiltration membranes", Sep. Purif. Technol., 42, 137-144. https://doi.org/10.1016/j.seppur.2004.07.003
  22. Lau, W.J. and Ismail, A.F. (2010), "Application of response surface methodology in pes/speek blend NF membrane for dyeing solution treatment", Membrane Water Treatment, 1, 49-60. https://doi.org/10.12989/mwt.2010.1.1.049
  23. Neal, C., Jarvie, H.P., Williams, R.J., Pinderb, C.V., Collett, G.D., Neal, M. and Bhardwaj, L. (2000), "The water quality of the Great Ouse", Sci. Total Env., 251-252, 423-440. https://doi.org/10.1016/S0048-9697(00)00420-4
  24. Neumann, W., Laasch, H. and Urbach, W. (1987), "Mechanisms of herbicide sorption in microalgae and the influence of environmental factors", Pestic. Biochem. Physiol, 27, 189-200. https://doi.org/10.1016/0048-3575(87)90046-0
  25. Nghiem L.D. (2010), "Influence of feed water chemistry on the removal of ionisable and neutral trace organics by a loose nanofiltration membrane", Membrane Water Treatment, 1, 93-101. https://doi.org/10.12989/mwt.2010.1.2.093
  26. Noble, A. (1993), "Partition coefficients (n-octanol-water) for pesticides", J. Chromatogr., 642, 3-14. https://doi.org/10.1016/0021-9673(93)80072-G
  27. Nghiem, L.D., Schäfer, A.I. and Waite, T.D. (2002), "Adsorptive interactions between membranes and trace contaminants", Desalination, 147, 269-274. https://doi.org/10.1016/S0011-9164(02)00550-7
  28. Ollers, S., Singer, H.P., Fassler, P. and Muller, S.R. (2001), "Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/ l level in surface and waste water", J. Chromatogr. A, 911, 225-234. https://doi.org/10.1016/S0021-9673(01)00514-3
  29. Pacakova, V., Stulík, K. and Príhoda, M. (1988), "High-performance liquid chromatography of s-triazines and their degradation products using ultraviolet photometric and amperometric detection", J. Chromatogr. A, 442, 147-156. https://doi.org/10.1016/S0021-9673(00)94464-9
  30. Pelekani, C. and Snoeyink, V.L. (1999), "Competitive adsorption in neutral water: role of activated carbon pore size", Water Res., 33, 1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7
  31. Quintana, J., Martì, I. and Ventura, F. (2001), "Monitoring of pesticides in drinking and related waters in NE Spain with a multiresidue SPE-GC-MS method including an estimation of the uncertainty of the analytical results", J. Chromatogr. A., 938, 3-13. https://doi.org/10.1016/S0021-9673(01)01168-2
  32. Rodriguez- Mozaz, S., Lopez de Alda, M.J. and Barcelo, D. (2004), "Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry", J. Chromatogr. A., 1045, 85-92. https://doi.org/10.1016/j.chroma.2004.06.040
  33. Sarkar, B., Venkateshwarlub, N., Nageswara Raob, R., Bhattacharjeec, C. and Kale, V. (2007a), "Potable water production from pesticide contaminated surface water−A membrane based approach", Desalination, 204, 368-373. https://doi.org/10.1016/j.desal.2006.02.041
  34. Sarkar, B., Venkateswralub, N., Nageswara Raob, R., Bhattacharjeec, C. and Kalea, V. (2007b), "Treatment of pesticide contaminated surface water for production of potable water by a coagulation−adsorption−nanofiltration approach", Desalination, 212, 129-140. https://doi.org/10.1016/j.desal.2006.09.021
  35. Schafer, A.I. (2001), Natural organics removal using membranes principles, performance and cost, Technomic Publishing, Lancaster, Pa
  36. Schafer, A.I., Fane, A.G. and Waite, T.D. (2005), Nanofiltration: principles and applications, Elsevier, Oxford, UK.
  37. Schmitt, P.H., Garrison, A.W., Freitag, D. and Kettrup, A. (1996), "Separation of s-triazine herbicides and their metabolites by capillary zone electrophoresis as a function of pH", J. Chromatogr. A., 723, 169-177. https://doi.org/10.1016/0021-9673(95)00805-5
  38. Shaalan, H.F., Ghaly, M.Y. and Farah, J.Y. (2007), "Techno economic evaluation for the treatment of pesticide industry effluents using membrane schemes", Desalination, 204, 265-276. https://doi.org/10.1016/j.desal.2006.04.032
  39. Tepus, B., Simonic, M. and Petrinic, I. (2009), "Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes", J. Hazard. Mater., 170, 1210-1217. https://doi.org/10.1016/j.jhazmat.2009.05.105
  40. Turgut, C. (2005), "Uptake and modeling of pesticides by roots and shoots of parrotfeather (Myriophyllum Aquaticum)", Environ. Sci. Pollut. Res., 12, 342-346. https://doi.org/10.1065/espr2005.05.256
  41. Thuy, P.T., Moons, K., van Dijk, J.C., Anh, N.V. and Van der Bruggen, B. (2008), "To what extent are pesticides removed from surface water during coagulation-flocculation?", Water Environ. J., 22, 217-223. https://doi.org/10.1111/j.1747-6593.2008.00128.x
  42. UNEP- Chemicals (2004). Stockholm Convention on Persistent Organic Pollutants, United Nation Environment Programme, Available from: Assessed on 24/6/04.
  43. Van der Bruggen, B., Schaep, J., Maes, W., Wilms, D. and Vandecasteele, C. (1998), "Nanofiltration as a treatment method for the removal of pesticides from ground waters", Desalination, 117, 139-147. https://doi.org/10.1016/S0011-9164(98)00081-2
  44. Van der Bruggen, B., Schaep, J., Wilms, D. and Vandecasteele, C. (1999), "Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration", J. Membrane Sci., 156, 29-41. https://doi.org/10.1016/S0376-7388(98)00326-3
  45. Van der Bruggen, B., Verliefde, A., Braeken, L., Cornelissen, E.R., Moons, K., Verberk, J.Q.J.C., van Dijk, H. J.C. and Amy, G. (2006), "Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration", J Chem. Technol. Biotechnol., 81, 1166-1176. https://doi.org/10.1002/jctb.1489
  46. Van der Hoff, G.R. and Van Zoonen, P. (1999), "Trace analysis of pesticides by gas chromatography", J. Chromatogr. A., 843, 301-322. https://doi.org/10.1016/S0021-9673(99)00511-7
  47. Verliefde, A.R.D., Cornelissen, E.R., Heijmana, S.G.J., Verberka, J.Q.J.C., Amy, G.L., Van der Bruggen, B., Van Dijk, J.C. (2009), "Construction and validation of a full-scale model for rejection of organic micropollutants by NF membranes", J. Membrane Sci., 339, 10-20. https://doi.org/10.1016/j.memsci.2009.03.038
  48. Vermeulen, N.M.J., Apostolides, Z., Potgieter, D.J.J., Nel, P.C. and Smit, N.S.H. (1982), "Separation of atrazine and some of its degradation products by high-performance liquid chromatography", J. Chromatogr. A., 240, 247-253. https://doi.org/10.1016/S0021-9673(01)84032-2
  49. Wong, M.H., Leung, A.O.W., Chan, J.K.Y. and Choi, M.P.K. (2005), "A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk", Chemosphere, 60, 740-752. https://doi.org/10.1016/j.chemosphere.2005.04.028
  50. Zhang, Y., Van der Bruggen, B., Chen, G.X., Braeken, L. and Vandecasteele, C. (2004), "Removal of pesticides by nanofiltration: effect of the water matrix", Sep. Purif. Technol., 38, 163-172. https://doi.org/10.1016/j.seppur.2003.11.003