DOI QR코드

DOI QR Code

Study of Stress Changes in Nanocrystalline Ni Thin Films Eletrodeposited from Chloride Baths

Chloride Bath로부터 전기도금된 나노결정립 니켈 박막의 잔류응력 변화에 대한 연구

  • Park, Deok-Yong (Department of Applied Materials Engineering, Division of Advanced Materials Engineering, Hanbat National University)
  • 박덕용 (한밭대학교 신소재공학부 응용소재공학)
  • Received : 2011.04.25
  • Accepted : 2011.06.30
  • Published : 2011.08.31

Abstract

Nanocrystalline Ni thin films were electodeposited from chloride baths to investigate the influences of additive concentration, current density and solution pH on residual (or internal) stress, surface morphology, and microstructure of the films. It was observed that residual stress in Ni thin film was changed from tensile stress mode (about 150 MPa) to compressive stress mode (about -100 MPa) with increasing saccharin concentration as an additive. Microstructure of Ni thin films was changed with/without saccharin in baths. Ni thin films electrodeposited from saccharinfree bath mainly consisted of both FCC(111) and FCC(200) phases. However, Ni thin film electrodeposited from the baths containing saccharin exhibited FCC(111), FCC(200) and FCC (311) phases [sometimes, FCC (220)]. Current density influenced residual stress of Ni thin films. It was measured to be the lowest compressive stress value (about-100 MPa) in range of current density of $2.5\sim10mA{\cdot}cm^{-2}$. Solution pH also influenced residual stress of Ni thin film. Addition of saccharin in baths affected grain size of Ni thin films. Grain sizes of Ni thin films were measured to be about 60 nm without saccharin and 24~38 nm with more than 0.0005M saccharin concentration. Surface of Ni thin films was changed from nodular to smooth surface morphology with addition of saccharin.

첨가제 농도, 전류밀도, 도금용액 pH가 Ni 박막의 잔류응력, 표면형상, 미세조직에 미치는 영향을 관찰하기 위하여 chloride 도금용액으로부터 나노결정립 Ni 박막이 제조되었다. Ni 박막에서 잔류응력은 첨가제인 saccharin의 농도가 증가함에 따라 인장응력모드(약 150 MPa)로부터 압축응력모드(약 -100 MPa)로의 천이가 관찰되었다. Ni 박막의 미세구조는 도금용액 내에 saccharin의 유무에 따라 변화되었다. Saccharin이 첨가되지 않은 도금용액으로부터 전기도금된 Ni 박막은 주로 FCC(111) 과 FCC(200) 상들로 구성되어 있다. 그러나 Saccharin이 첨가된 도금용액으로부터 전기도금된 Ni 박막은 FCC(111), FCC(200), FCC (311) 상[때로는 FCC (220)]들로 구성되어 있다. 전류밀도는 Ni 박막의 잔류응력에 영향을 미치는 것으로 관찰되었다. $2.5\sim2.5{\mu}10mA{\cdot}cm^{-2}$의 전류밀도에서 가장 낮은 압축응력 값(약 -100 MPa)을 나타내었다. 도금용액의 pH 도 역시 Ni 박막의 잔류응력에 영향을 미쳤다. 한편, 도금용액에 saccharin의 첨가는 Ni 박막의 결정립 크기에 영향을 나타내었다. Saccharin이 첨가되지 않은 경우 Ni 박막의 결정립 크기가 약 60 nm로 측정되었으며, saccharin 함량이 0.0005 M 이상 첨가된 경우 Ni 박막의 결정립 크기가 24~38 nm로 측정되었다. Ni 박막의 표면 형상은 saccharin이 첨가됨에 따라 nodular 형상으로부터 매끄러운 (smooth) 형상으로 변화되었다.

Keywords

References

  1. F. Czerwinski, A. Zielinska-Lipiec, and J.A. Szpunar, "Thermal instability of ni electrodeposits applied in replication of optical recording devices" Acta Mater., 47, 2553 (1999). https://doi.org/10.1016/S1359-6454(99)00063-4
  2. C.A. Moina and M. Vazdar, "Electrodeposition of nanosized nuclei of magnetic Co-Ni alloys onto n-Si (100)" Electrochem. Commun., 3, 159 (2001). https://doi.org/10.1016/S1388-2481(01)00114-X
  3. J.W. Judy, R.S. Muller and H.H. Zappe, "Magnetic microactuation of polysilicon flexure structures" J. Microelectromech. Syst., 4(4), 162 (1995). https://doi.org/10.1109/84.475542
  4. J. W. Judy and R. S. Muller, "Magnetically actuated, addressable microstructures" J. Microelectromech. Syst., 6, 249 (1997). https://doi.org/10.1109/84.623114
  5. K. Kataoka, S. Kawamura, T. Itoh, K. Ishikawa, H. Honma, and T. Suga, "Electroplating Ni micro-cantilevers for low contact-force IC probing" Sens. Actuators, A, 103, 116 (2003).
  6. H. H. Yang, N. V. Myung, J. Yee, D.-Y. Park, B.-Y. Yoo, M. Schwartz, K. Nobe, and J.W. Judy, "Ferromagnetic micromechanical magnetometer" Sens. Actuators, A, 97- 98, 88 (2002). https://doi.org/10.1016/S0924-4247(01)00809-3
  7. S. M. Allameh, J. Lou, F. Kavishe, T. Buchheit, and W.O. Soboyejo, "An investigation of fatigue in LIGA Ni MEMS thin films", Mater. Sci. Eng., A, 371, 256 (2004). https://doi.org/10.1016/j.msea.2003.12.020
  8. M. Ya. Poperaka, Internal Stress in Electrolytically Deposited Metals, transl. from Russian, Indian National Scientific Documentation Center, New Delhi, National Bureau of Standards and the National Science Foundation, Washington, DC, 1970.
  9. R. Weil, Plating, "The origins of stress in electrodeposits", 57, 1231 (1970); 58, 137 (1971).
  10. J.W. Dini, Electrodeposition-The Materials Science of Coatings and Substrates, Noyes Publ. Park Ridge, NJ, 1993, pp. 339 and 331.
  11. Modern Electroplating, 4th ed., G. A. Di Bari, M. Schlesinger, and M. Paunovic, Editors, pp. 139-199, Wiley-Interscience, New York (2000).
  12. D.-Y. Park, K.S. Park, J.M. Ko, D.-H. Cho, S.H. Lim, W.Y. Kim, B.Y. Yoo, and N.V. Myung, "Electrodeposited Ni1−xCox nanocrystalline thin films: structure-property relationships", J. Electrochem. Soc., 153(12), C814-C821 (2006). https://doi.org/10.1149/1.2353792
  13. B.-Z. Lee, D.N. Lee, "Spontaneous growth mechanism of tin whiskers", Acta Mater., 46, 3701 (1998). https://doi.org/10.1016/S1359-6454(98)00045-7
  14. K.-N. Tu, J. W. Mayer, and L. C. Feldman (Eds.), Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmillan Publishing Company, New York, New York, 1992, Chap. 4.
  15. R. Weil, "The origins of stress in electrodeposits", Plating, 58, 50 (1971).
  16. I. Kim and P.F. Mentone, "Electroformed nickel stamper for light guide panel in LCD back light unit" Electrochim. Acta, 52, 1805-1809 (2006). https://doi.org/10.1016/j.electacta.2006.01.083
  17. P. Zentner, Brenner, and Jennings, "Physical. properties of electrodeposited metals", Plating, 39, 865, 1229 (1952).

Cited by

  1. Effects of Electrodeposition Conditions on Properties of Ni Thin Films Electrodeposited from Baths Fabricated by Dissolving Metal Ni Powders vol.48, pp.3, 2015, https://doi.org/10.5695/JKISE.2015.48.3.73