DOI QR코드

DOI QR Code

Thermal Stability of Surface Film Formed on a Graphite Negative Electrode in Lithium Secondary Batteries

리튬 이차전지의 흑연 음극에 형성된 표면피막의 열적 안정성

  • Jeong, Soon-Ki (Department of Chemical Engineering, Soonchunhyang University) ;
  • Lee, Ha-Na (Department of Chemical Engineering, Soonchunhyang University) ;
  • Kim, Yang-Soo (Suncheon Center, Korea Basic Science Institute)
  • 정순기 (순천향대학교 나노화학공학과) ;
  • 이하나 (순천향대학교 나노화학공학과) ;
  • 김양수 (한국기초과학지원연구원 순천센터)
  • Received : 2011.08.22
  • Accepted : 2011.08.25
  • Published : 2011.08.31

Abstract

The stability at elevated temperatures of a surface film formed on a graphite electrode in lithium secondary batteries was investigated by transmission electron microscopy (TEM) and electrochemical AC impedance spectroscopy (EIS). TEM analysis revealed that the surface film partly dissolved in the electrolyte solution during storage at $60^{\circ}C$, resulting in a decrease in the thickness of the surface film and a change in its morphology to a porous structure. On the other hand, an increase in the impedance of the surface film which is attributable to a change in composition of the surface film was confirmed by EIS analysis during the storage at $60^{\circ}C$. It was also shown that the addition of vinylene carbonate or 1,3-propane sultone or etylene sulfite, even if limited, improves the stability of the surface film at elevated temperatures.

투과형 전자 현미경과 전기화학 임피던스 분광법을 이용하여 리튬 이차전지의 흑연 음극에 생성되는 표면피막의 고온 안정성을 고찰하였다. 투과형 전자 현미경을 이용한 분석에 의해 $60^{\circ}C$에서 저장되는 동안 표면피막의 일부가 전해질 용액 중에 용해되는 것이 확인되었으며, 이 과정에서 피막의 두께 감소 및 피막의 형상이 다공성 구조로 변하였다. 한편, 이 과정에서 피막의 조성 변화에 기인하는 것으로 추측되는 표면피막의 저항 증가가 전기화학 임피던스 분광법에 의하여 확인되었다. 표면피막의 고온 안정성은 vinylene carbonate, 1,3-propane sultone, etylene sulfite와 같은 첨가제에 의해 제한적으로 개선되었다.

Keywords

References

  1. J. R. Dahn, 'Phase-diagram of $Li_xC_6$' Phys. Rev., B44, 9170 (1991).
  2. T. Ohzuku, Y. Iwakoshi, and K. Sawai, 'Formaion of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for lithium ion (shuttlecock) cell' J. Electrochem. Soc., 140, 2490 (1993). https://doi.org/10.1149/1.2220849
  3. Z. Jiang, M. Alamgir, and K. M. Abraham, 'The electrochemical intercalation of Li into graphite in Li/polymer electrolyte/graphite cells' J. Electrochem. Soc., 142, 333 (1995). https://doi.org/10.1149/1.2043997
  4. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizutani, and M. Asano, 'In situ Raman study on electrochemical Li intercalation into graphite' J. Electrochem. Soc., 142, 20 (1995). https://doi.org/10.1149/1.2043869
  5. R. Yazami and D. Guerard, 'Some aspects on the ppeparation, structure and physical and electrochemical properties of $Li_xC_6$', J. Power Sources, 43-44, 39 (1993).
  6. E. Peled, "Handbook of Battery Materials" 419, Wiley-VCH, Weinheim (1999).
  7. E. Peled, 'The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems? The solid electrolyte interphase Model' J. Electrochem. Soc., 126, 2047 (1979). https://doi.org/10.1149/1.2128859
  8. Z. Ogumi, A. Sano, M. Inaba, and T. Abe, 'Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode' J. Power Sources, 97-98, 156 (2001). https://doi.org/10.1016/S0378-7753(01)00529-8
  9. D. Bar-Tow, E. Peled, and L. Burstein, 'A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries' J. Electrochem. Soc., 146, 824 (1999). https://doi.org/10.1149/1.1391688
  10. E. Pled, D. Bar-Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, 'Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies' J. Power Sources, 97-98, 52 (2001). https://doi.org/10.1016/S0378-7753(01)00505-5
  11. C. Menachem, E. Peled, L. Burstein, and Y. Rosenberg, 'Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries' J. Power Sources, 68, 277 (1997). https://doi.org/10.1016/S0378-7753(96)02629-8
  12. E. Peled, D. Golodnitsky, C. Menachem, and D. Bar-Tow, 'An advanced tool for the selection of electrolyte components for rechargeable lithium batteries' J. Electrochem. Soc., 145, 3482 (1998). https://doi.org/10.1149/1.1838831
  13. O. Chusid (Youngman), Y. E. Ely, D. Aurbach, M. Babai, and Y. Carmeli 'Electrochemical and spectroscopic studies of carbon electrodes in lithium battery electrolyte systems' J. Power Sources, 43-44, 47 (1993).
  14. Y. Ein-Eli, B. Markovsky, D. Aurbach, Y. Carmeli, H. Yamin, and S. Luski, 'The dependence of the performance of Li-C intercalation amodes for Li-ion secondary batteries on the electrolyte solution composition' Electrochim. Acta, 39, 2559 (1994). https://doi.org/10.1016/0013-4686(94)00221-5
  15. D. Aurbach, Y. Ein-Eli, O. Chusid (Youngman), Y. Carmeli, M. Babai, and H. Yamin, 'The correlation between the surface chemistry and the performance of Li-carbon intercalation snodes for rechargeable rocking-chair type batteries' J. Electrochem. Soc., 141, 603 (1994). https://doi.org/10.1149/1.2054777
  16. D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, S. Luski, Y. Carmeli, and H. Yamin, 'The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries' J. Electrochem. Soc., 142, 2882 (1995). https://doi.org/10.1149/1.2048659
  17. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, Y. Iriyama, T. Abe, and Z. Ogumi, 'Surface film formation on graphite negative electrode at elevated temperatures' Electrochemistry, 71, 1132 (2003).
  18. M. Inaba, H. Tomiyasu, A. Tasaka, S.-K. Jeong, and Z. Ogumi, 'Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures' Langmuir, 20, 1348 (2004). https://doi.org/10.1021/la035857z
  19. A. Funabiki, M. Inaba, and Z. Ogumi, 'AC impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite' J. Power Sources, 68, 227 (1997). https://doi.org/10.1016/S0378-7753(96)02556-6
  20. M. Itagaki, S. Yotsuda, N. Kobari, K. Watanabe, S. Kinoshita, and M. Ue, 'Electrochemical impedance of electrolyte/electrode interfaces of lithium-ion rechargeable batteries: Effects of additives to the electrolyte on negative electrode' Electrochim. Acta, 51, 1629 (2006). https://doi.org/10.1016/j.electacta.2005.02.136
  21. G. H. Grodnigg, T. M. Grodnigg, J. O. Besenhard, and M. Winter, 'Propylene sulfite as film-forming electrolyte additive in lithium ion batteries' J. Power Sources, 97-98, 592 (2001). https://doi.org/10.1016/S0378-7753(01)00536-5
  22. M. Xu, W. Li, and B. L. Lucht, 'Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries' J. Power Sources, 193, 804 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.067
  23. B. T. Yu, W. H. Qiu, F. H. Li, and L. Cheng, 'A study on sulfites for lithium-ion battery electrolytes' J. Power Sources, 158, 1373 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.033