DOI QR코드

DOI QR Code

Mechanical Properties of Nitrided STS 431 Martensitic Stainless Steel by the Active Screen Ion Nitriding

활성 스크린 이온질화 처리된 마르텐사이트계 스테인리스 431강의 기계적 특성

  • Bang, Hyun-Bae (School of Materials Science and Engineering, Pusan National University) ;
  • Jung, Uoo-Chang (Korea Institute of Industrial Technology) ;
  • Jung, Won-Sub (School of Materials Science and Engineering, Pusan National University) ;
  • Cha, Byung-Chul (Korea Institute of Industrial Technology)
  • 방현배 (부산대학교 공과대학 재료공학과) ;
  • 정우창 (한국생산기술연구원 동남권지역본부) ;
  • 정원섭 (부산대학교 공과대학 재료공학과) ;
  • 차병철 (한국생산기술연구원 동남권지역본부)
  • Received : 2011.06.28
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

Martensitic stainless steel STS 431 has been nitrided by active screen ion nitriding under the various temperature and time. The thickness of diffusion layer, case depth, hardness and composition phases were investigated using field emission scanning electron microscopy (FE-SEM), micro-Vickers hardness tester, X-ray diffraction (XRD) and glow discharge spectroscopy (GDS). It was observed that the thickness of diffusion layer depends strongly on the treatment temperature and time. A sample, which was nitrided at $450^{\circ}C$ for 8hours, was a maximum hardness of Hv0.01 1558 and nitride layer of $70{\mu}m$. As shown in XRD patterns, $\varepsilon(Fe_{2-3}N)$ and expanded martensite (${\alpha}_N$) phases which was saturated with nitrogen solid solution were in the nitrided layer treated at $450^{\circ}C$ for 2 hours. Composition phases of $\varepsilon$ $(Fe_{2-3}N)$ and ${\gamma}'$ ($Fe_4N$) were observed after active screen nitriding at $450^{\circ}C$ for 8 hours.

Keywords

References

  1. C. X. Li, T. Bell, Corros. Sci., 48 (2006) 2036. https://doi.org/10.1016/j.corsci.2005.08.011
  2. Yun-tao Xi, Dao-xin Liu, Dong Han, Surf. Coat. Technol., 202 (2008) 2577. https://doi.org/10.1016/j.surfcoat.2007.09.036
  3. S. Ahangarani, A. R. Sabour, F. Mahboubi, T. Shahrabi, J. Alloys Compd., 484 (2009) 222. https://doi.org/10.1016/j.jallcom.2009.03.161
  4. S. Corujeira Gallo, H. Dong, Vacuum, 84 (2009) 321 https://doi.org/10.1016/j.vacuum.2009.07.002
  5. M. Keshavarz Hedayati, F. Mahboubi, T. Nickchi, Vacuum, 83 (2009) 1123. https://doi.org/10.1016/j.vacuum.2009.02.005
  6. C. X. Li, T. Bell, Wear, 256 (2004) 1144. https://doi.org/10.1016/j.wear.2003.07.006
  7. C. X. Li, T. Bell, Corros. Sci., 46 (2004) 1527. https://doi.org/10.1016/j.corsci.2003.09.015
  8. S. Janosi, Z. Kolozsvary, A. Kis, Met. Sci. Heat Treat., 46 (2004) 310. https://doi.org/10.1023/B:MSAT.0000048840.94386.25
  9. J. Flis, J. Mankowski, E. Rolinski, Surf. Eng., 5 (1989) 151. https://doi.org/10.1179/sur.1989.5.2.151
  10. Y. T. Xi, D. X. Liu, D. Han, Z. F. Han, Acta Metall. Sinica (English Letters), 21 (2008) 21. https://doi.org/10.1016/S1006-7191(08)60015-0
  11. I. Alphosa, A. Chainani, P. M. Raole, B. Ganguli, P. I. John, Surf. Coat. Technol., 150 (2002) 263. https://doi.org/10.1016/S0257-8972(01)01536-5
  12. N. Mingolo, A. P. Tschiptschin, C. E. Pinedo, Surf. Coat. Technol., 201 (2006) 4215. https://doi.org/10.1016/j.surfcoat.2006.08.060
  13. P. Corengia, G. Ybarra, C. Moina, A. Cabo, E. Broitman, Surf. Coat. Technol., 187 (2004) 63. https://doi.org/10.1016/j.surfcoat.2004.01.031
  14. S. Corujeira Gallo, H. Dong, Surf. Coat. Technol., 203 (2009) 3669. https://doi.org/10.1016/j.surfcoat.2009.05.045
  15. S. G. Kim, S. W. Kim, P. J. Brand, J. of Korean Society for Heat Treatment, 23 (2010) 3.
  16. S. K. Kim, J. S. Yoo, J. M. Priest, M. P. Fewell, Surf. Coat. Technol., 163-164 (2003) 380. https://doi.org/10.1016/S0257-8972(02)00631-X
  17. Metals Handbook Ninth Edition (American Society for Metals, USA), 3 (1980) 29.
  18. I. Sherrington, P. Hayhurst, Wear, 249 (2001) 182. https://doi.org/10.1016/S0043-1648(01)00572-5

Cited by

  1. The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel vol.44, pp.5, 2011, https://doi.org/10.5695/JKISE.2011.44.5.207