DOI QR코드

DOI QR Code

The Influence of Substrate Temperature on the Structural and Optical Properties of ZnS Thin Films

기판온도가 ZnS 박막의 구조 및 광학적 특성에 미치는 영향

  • Hwang, Dong-Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Ahn, Jung-Hoon (School of Materials Science and Engineering, Pusan National University) ;
  • Son, Young-Guk (School of Materials Science and Engineering, Pusan National University)
  • Received : 2011.06.28
  • Accepted : 2011.08.03
  • Published : 2011.09.01

Abstract

Znic sulfide (ZnS) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The substrate temperature varied from room temperature (RT) to $500^{\circ}C$. The structural and optical properties of ZnS films were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive analysis of X-ray (EDAX) and UV-visible transmission spectra. The XRD analyses reveal that ZnS films have cubic structures with (111) preferential orientation, whereas the diffraction patterns sharpen with the increase in substrate temperatures. The FESEM images indicate that ZnS films deposited at $400^{\circ}C$ have nano-sized grains with a grain size of ~ 67 nm. Then films exhibit relatively high transmittance of 80% in the visible region, with an energy band gap of 3.71 eV. One obvious result is that the energy band gap of the film increases with increasing the substrate temperatures.

Keywords

References

  1. H. Metin and R. Esen, J. Cryst. Growth, 258, 141 (2003). https://doi.org/10.1016/S0022-0248(03)01518-5
  2. L. X. Shao, K. H. Chang, and H. L. Hwang, Appl. Surf. Sci., 212, 305 (2003). https://doi.org/10.1016/S0169-4332(03)00085-0
  3. R. Zhang, B. Wang, and L. Wei, Mater. Chem. Phys., 112, 557 (2008). https://doi.org/10.1016/j.matchemphys.2008.05.089
  4. Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci., 254, 5711 (2008). https://doi.org/10.1016/j.apsusc.2008.03.059
  5. M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, and K. Akimoto, Sol. Energy Mater. Sol. Cells, 93, 970 (2009). https://doi.org/10.1016/j.solmat.2008.11.047
  6. C. T. Hsu, J. Cryst. Growth, 208, 259 (2000). https://doi.org/10.1016/S0022-0248(99)00410-8
  7. J. Ihanus, M. Ritala, M. Leskela, T. Prohaska, R. Resch, G. Friedbacher, and M. Grasserbauer, Appl. Surf. Sci., 120, 43 (1997). https://doi.org/10.1016/S0169-4332(97)00226-2
  8. V. L. Gayou, B. Salazar-Hernandez, M. E. Constantino, E. R. Andres, T. Diaz, R. D. Macuil, and M. R. Lopez, Vaccum, 84, 1191 (2010). https://doi.org/10.1016/j.vacuum.2009.10.023
  9. Q. Liu, M. Guobing, and A. Jianping, Appl. Surf. Sci., 254, 5711 (2008). https://doi.org/10.1016/j.apsusc.2008.03.059
  10. W. Daranfed, M. S. Aida, A. Hafdallah, and H. Lekiket, Thin Solid Films, 518, 1082 (2009). https://doi.org/10.1016/j.tsf.2009.03.227
  11. T. Yamaguchi, Y. Yamamoto, T. Tanaka, Y. Demizu, and A. Yoshida, Thin Solid Films, 281, 375 (1996). https://doi.org/10.1016/0040-6090(96)08624-5
  12. Y. P. V. Subbaiah, P. Prathap, K. T. R. Reddy, Appl. Surf. Sci., 253, 2409 (2006). https://doi.org/10.1016/j.apsusc.2006.04.063
  13. B. D. Cullity, Elements of X-ray Diffractions, (Addison-Wesley, Reading, 1978) p. 102.
  14. Y. G. Son, D. H. Hwang, and S. Cho, J. Korean Vacuum Soc., 16, 267 (2007). https://doi.org/10.5757/JKVS.2007.16.4.267
  15. J. Jung and S. Cho, J. KIEEME, 23, 280 (2010).
  16. X. Chen, W. Guan, G. Fang, and X. Z. Zhao, Appl. Surf. Sci, 252, 1561 (2005). https://doi.org/10.1016/j.apsusc.2005.02.137