DOI QR코드

DOI QR Code

Effect on the Electrical Characteristics of OLEDs Depending on Amorphous Fluoropolymer

유기발광다이오드의 전기적 특성에 미치는 Teflon-AF의 영향

  • Shim, Sang-Min (Department of Electrical Engineering. Kwangwoon University) ;
  • Han, Hyun-Suk (Department of Electrical Engineering. Kwangwoon University) ;
  • Kang, Yong-Gil (Department of Electrical Engineering. Kwangwoon University) ;
  • Kim, Weon-Jong (Department of Electrical Engineering. Kwangwoon University) ;
  • Hong, Jin-Woong (Department of Electrical Engineering. Kwangwoon University)
  • Received : 2011.08.08
  • Accepted : 2011.08.16
  • Published : 2011.09.01

Abstract

In this research, the electric characteristic of organic light-emitting diodes(OLEDs) was studied depending on thickness of amorphous fluoropolymer(Teflon-AF) which is the material of hole injection layer to improve electric characteristic of OLEDs. Sample composition was fabricated in double layer. The basic structure was fabricated by ITO/tris(8-hydroxyquinoline) aluminum (Alq3)/Al and the 2 layer was fabricated by ITO/2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole(Teflon-AF)/tris(8-hydro xyquinoline) aluminum (Alq3)/Al. The experiment was carried with variation of thickness of Teflon-AF at 1.0, 2.0, 2.5, 3.0 nm. The result showed when Teflon-AF thickness was 2.5 nm, the electric and optical characteristic were well performed. Moreover, when it was compared with Teflon-AF without materials, it was improved 15.1 times more on luminance, 12.7 times more on luminous efficiency and 12.1 times more on external quantum efficiency. Therefore, OLEDs element with optimum hole injection layer reduced energy barrier and driving voltage, and confirmed that it improved efficiency widely.

Keywords

References

  1. G. B. Blanchet, Y. L. Loo, J. A. Rogers, F. Gao, and C. R. Fincher, Appl. Phys. Lett., 82, 463 (2003). https://doi.org/10.1063/1.1533110
  2. H. Mu, H. Shen, and D. Klotzkin, Solid-State Electron., 48, 2085 (2004). https://doi.org/10.1016/j.sse.2004.05.067
  3. W. J. Kim, Y. H. Lee, T. Y. Kim, T. W. Kim, and J. W. Hong, J. Korean Phys. Soc., 51, 1007 (2007). https://doi.org/10.3938/jkps.51.1007
  4. S. F. Chen and C. W. Wang, Appl. Phys. Lett., 85, 765 (2004). https://doi.org/10.1063/1.1775282
  5. S. K. Kim, J. W. Hong, and T. W. Kim, Trans. KIEE, 51, 322 (2002).
  6. W. J. Kim, Y. H. Lee, J. H. Yang, T. Y. Kim, T. W. Kim, and J. W. Hong, Molecular Electronics and Devices, 16, 85 (2005).
  7. D. H. Chung and T. W. Kim, Trans. KIEE, 8, 131 (2007).
  8. A. Bernanose, M. Comte, and P. Vouaux, J. Chim. Phys., 50, 65 (1953).
  9. Y. H. Lee, W. J. Kim, T. Y. Kim, T. W. Kim, and J. W. Hong, J. Korean. Phys. Soc., 51, 1016 (2007). https://doi.org/10.3938/jkps.51.1016
  10. Y. H. Lee, W. J. Kim, K. S. Cho, T. W. Kim, and J. W. Hong, J . Korean Phys. Soc., 53, 1460 (2008). https://doi.org/10.3938/jkps.53.1460
  11. V. Parihar, R. Singh, R. Sharangpani, S. D. Russell, and C. A. Young, IEEE Trans. Elec. Dev., 47, 1463 (2000). https://doi.org/10.1109/16.848292
  12. R. Sharangpani, R. Singh, M. Drews, and K. Ivey, J. Electron. Mater., 26, 402 (1997). https://doi.org/10.1007/s11664-997-0110-z
  13. W. J. Kim, H. T. Shin, J. Y. Shin, and J. W. Hong, J. KIEEME, 22, 74 (2009).
  14. Y. Qiu and D. Q. Zhang, Synth. Met., 110, 241 (2000). https://doi.org/10.1016/S0379-6779(99)00300-8
  15. Y. Divayana, B. J. Chen, X. W. Sun, and K. S. S arma, Appl. Phys. Lett., 88, 083508 (2008).