DOI QR코드

DOI QR Code

Seasonal and Spatial Variations of CO2 Fluxes Between Surface and Atmosphere in Foreshore, Paddy Field and Woods Sites

갯벌, 논 및 산림 부지에서 지표와 대기 사이의 이산화탄소 플럭스 계절/공간 변동 분석

  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University) ;
  • Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Yu, Hun-Sun (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Park-Sa (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kim, Kwang-Ho (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 강동환 (부경대학교 지구과학연구소) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 유훈선 (부경대학교 환경대기과학과) ;
  • 김박사 (부경대학교 환경대기과학과) ;
  • 김광호 (부경대학교 환경대기과학과)
  • Received : 2011.02.25
  • Accepted : 2011.06.20
  • Published : 2011.08.31

Abstract

For this research, they were monitored $CO_2$ flux and environmental factors ($CO_2$ concentration, soil temperature, soil moisture, soil organic carbon, soil pH, soil Eh) in foreshore, paddy field and woods sites at the winter season (January 2009) and the summer season (September 2009). Seasonal and spatial variations for monitored data were analyzed, and linear regression functions of $CO_2$ flux as environmental factors were estimated. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the winter season were shown $-8\;mgCO_2m^{-2}hr^{-1}$ and $-25\;mgCO_2m^{-2}hr^{-1}$, respectively. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the summer season were shown $47\;mgCO_2m^{-2}hr^{-1}$ and $117\;mgCO_2m^{-2}hr^{-1}$, respectively. Thus, $CO_2$ was sunk from atmosphere to surface at the winter season and it was emitted from surface to atmosphere at the summer season. $CO_2$ fluxes in woods site were emitted $145\;mgCO_2m^{-2}hr^{-1}$ at the winter season and $279\;mgCO_2m^{-2}hr^{-1}$ at the summer season.

Keywords

References

  1. 강동환, 권병혁, 김필근, 2010, 순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성, 한국환경과학회지, 19(2), 217-227. https://doi.org/10.5322/JES.2010.19.2.217
  2. 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측, 수산해양교육학회지, 20(1), 58-67.
  3. 김득수, 2007, 온실기체($CH_4,\;CO_2,\;N_2O$)의 하구언갯벌 배출량과 배출특성연구, 한국대기환경학회지, 23(2), 225-241. https://doi.org/10.5572/KOSAE.2007.23.2.225
  4. 이희춘, 홍진규, 조천호, 최병철, 오성남, 김준, 2003, 한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환, 한국농림기상학회지, 5(2), 61-69.
  5. 채남이, 김래현, 황태희, 서상욱, 이재석, 손요한, 이도원, 김준, 2005, 식물 환경 조절 시스템에서의 토양 호흡 관측 챔버법의 비교 실험, 한국농림기상학회지, 7(1), 107-114.
  6. 채남이, 김준, 김동길, 이도원, 김래현, 반지연, 손요한, 2003, 폐회로 역학 챔버 시스템을 이용한 토양 이산화탄소 플럭스 관측, 한국농림기상학회지, 5(2), 94-100.
  7. 최태진, 김준, 임종환, 2003, 2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환, 한국농림기상학회지, 5(2), 70-80.
  8. 환경부, 2002, 토양오염공정시험법, 218.
  9. Bohn, H. L., McNeal, B. L., O'Connor, G. A., 2001, Soil chemistry, 3rd edition, John wiely & Sons, Inc., 307.
  10. Boone, R. D., Nadelhoffer K. J., Canary, J. D., Kaye, J. P., 1998, Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570-572. https://doi.org/10.1038/25119
  11. Field, C. B., Ball, J. T., Berry, J. A., 1989, Photosynthesis, principles and filed techniques. In Plant physiological ecology, field methods and instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W.,), Chapmand and Hall, New York, 209-253.
  12. Fierer, N., and Schimel, J. P., 2003, A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil, Soil Science Society of America Journal, 67, 798-805. https://doi.org/10.2136/sssaj2003.0798
  13. Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W. Arshad, M. A., Schomberg, H. H., Hons, F. M., 2001, Climatic influences on active fractions of soil organic matter, Soil Biology and Biochemistry, 33(7-9), 1103-1111. https://doi.org/10.1016/S0038-0717(01)00016-5
  14. Glinski, J., Stepniewski, W., 1985, Soil aeration and its role for plants, CRC Press, Boca Raton, FL.
  15. Guo, H., Noormets, A., Zhao, B., Chen, J., Sun, G., Gu, Y., Li, B., Chen, J., 2009, Tidal effects on net ecosystem exchange of carbon in an estuarine wetland, Agricultural and Forest Meteorology, 149, 1820-1828. https://doi.org/10.1016/j.agrformet.2009.06.010
  16. IPCC, 2001, Third Assessment Report, Cambridge University Press, Cambridge, United Kingdom.
  17. Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Guomundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., Valentini, R., 2001, Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biology, 7(3), 269-278. https://doi.org/10.1046/j.1365-2486.2001.00412.x
  18. Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., 2009, Carbon storage and fluxes within freshwater wetlands: a critical review, Wetlands, DOI 10.1007/s13157-009-0003-4.
  19. Kowalenko, C. G., Ivarson, K. C., Cameron, D. R., 1978, Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils, Soil Biology and Biochemistry, 10, 417-423. https://doi.org/10.1016/0038-0717(78)90068-8
  20. Liu, X., Wan, S., Su, B., Hui, d., Luo, Y., 2002, Response of soil $CO_2$ efflux to water manipulation in a tallgrass prairie ecosystem, Plant and Soil, 240, 213-223. https://doi.org/10.1023/A:1015744126533
  21. Lloyd, J., Taylor, J. A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824
  22. Luo, Y, Zhou, X., 2006, Soil respiration and the environment, ELSEVIER, 305.
  23. Moore, T. R., 1986, Carbon dioxide evolution from subarctic peatlands in eastern Canada, Arctic Alpine Research, 18, 189-193. https://doi.org/10.2307/1551128
  24. Papendick, R. I., Campbell, G. S., 1981, Theory and measurement of water potential, In Water potential relations in soil microbiology(Parr, J. F., Gardner, W. R., and Elliott, L. F., eds.), 1-22, Soil Science Society of America, Special Publication No. 9, Madison, WI.
  25. Raich, J. W., Nadelhoffer, K. J., 1989, Belowground carbon allocation in forest ecosystems: Global trends, Ecology, 70(5), 1346-1354. https://doi.org/10.2307/1938194
  26. Rao, D. L. N., Pathak, H., 1996, Ameliorative influence of organic matter on biological activity of salt affected soils, Arid Soil Research and Rehabilitation, 10, 311-319. https://doi.org/10.1080/15324989609381446
  27. Rayment, M. B., Jarvis, P. G., 2000, Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest, Soil Biology and Biochemistry, 32, 35-45. https://doi.org/10.1016/S0038-0717(99)00110-8
  28. Rogner, H.-H., Zhou, D., Bradley, R., Crabbe, P., Edenhofer, O., Hare, B., Kuijpers, L., Yamaguchi, M., 2007, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  29. Schlesinger, W. H., 1997, Biogeochemistry: An analysis of global change, Academic Press/Elsevier, San Diego, CA.
  30. Sitaula, B. K., Bakken, L. R., and Abrahamsen, G., 1995, N-fertilization and soil acidification effects on $N_2O\;and\;CO_2$ emission from temperate pine forest soil, Soil Biology and Biochemistry, 27(11),1401-1408. https://doi.org/10.1016/0038-0717(95)00078-S
  31. Verburg, P. J., Arnone III, J. A., Obrist, D., Schorran, D., Evans, R. D., Leroux-Swarthout, D., Johnson, D. W., Luo, Y., and Coleman, J. S., 2004, Net ecosystem carbon exchange in two experimental grassland ecosystems, Global Change Biology, 10, 498-508. https://doi.org/10.1111/j.1529-8817.2003.00744.x
  32. Xu, L., Baldocchi, D. D., Tan, J., 2004, How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Global Biogeochemical Cycles, 18, GB4002, Doi: 10.1029/2004GB002281.
  33. Yamamoto, A., Hirota, M., Suzuki, S., Oe, Y., Zhang, P., Mariko, S., 2009, Effects of tidal fluctuations on $CO_2\;and\;CH_4$ fluxes in the littoral zone of a brackish-water lake, Limnology, 10, 229-237. https://doi.org/10.1007/s10201-009-0284-6

Cited by

  1. Concentrations at Sunset before and after of Summer Season at the Foreshore vol.23, pp.3, 2014, https://doi.org/10.5322/JESI.2014.23.3.399
  2. Fluxes to Seasonal Variations in a Grassplot vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1131