References
- Z. Li, K. Wang, L. Li, and F.-Y. Wang, "A review on visionbased pedestrian detection for intelligent vehicles," Vehicular Electronics and Safety, IEEE International, pp. 57-62, 2006.
- M. Bertozzi, A. Broggi, M. Felisa, G. Vezzoni, and M. Del Rose, "Low-level pedestrian detection by means of visible and infrared tetra-vision," Proc. IEEE Intelligent Vehicles Symposium, Tokyo, Japan, pp. 231-236, June 2006. https://doi.org/10.1109/IVS.2006.1689633
- M. Bertozzi, A. Broggi, M. Del Rose, and M. Felisa, "A symmetry-based validator and refinement system for pedestrian detection in far infrared images," Proc. IEEE Intelligent Transportation Systems, Seattle, USA, pp. 155-160, Sep. 2007. https://doi.org/10.1109/ITSC.2007.4357695
- M. Bertozzi, A. Broggi, C. Caraffi, M. Del Rose, M. Felisa, and G. Vezzoni, "Pedestrian detection by means of far-infrared stereo vision," International Journal of Computrer Vision and Image Understanding, vol. 106, no. 2-3, pp. 194-204, May 2007. https://doi.org/10.1016/j.cviu.2006.07.016
- M. Bertozzi, E.Binelli, A. Broggi, and M. Del Rose, "Stereo vision-based approaches for pedestrian detection," Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 16-22, 2005. https://doi.org/10.1109/CVPR.2005.534
- F. Han, Y. Shan, R. Cekander, H. S. Sawhney, and R. Kumar, "A two-stage approach to people and vehicle detection with HOGbase SVM," Proc. PerMIS, pp. 133-140, 2006.
- D. Fernandez, I. Parra, M. A. Sotelo, and P. A. Revenga, "Bounding box accuracy in pedestrian detection for intelligent transportation systems," Proc. IEEE Industrial Electronics IECON, pp. 3486-3491, 2006. https://doi.org/10.1109/IECON.2006.347744
- L. Xin, D. Bin, and H. Hagen, "Vision-based real-time pedestrian detection for autonomus vehicle," Proc. IEEE Vehicular Electronics and Safety, pp. 1-5, Dec. 2007. https://doi.org/10.1109/ICVES.2007.4456404
- L. Yu, W. Yao, H. Liu, and F. Liu, "A monocular vision based pedestrian detection system for intelligent vehicles," Proc. IEEE Intelligent Vehicles Symposium, pp. 524-529, Eindhoven, The Netherlands, June 2008. https://doi.org/10.1109/IVS.2008.4621295
- M. Bertozzi, A. Broggi, Fascioli and P. Lombardi, "Vision-based Pedestrian Detection: will Ants Help?," Proc. IEEE Intelligent Vehicles Symposium, vol. 1, pp. 1-7, 2002. https://doi.org/10.1109/IVS.2002.1187919
- Guo Lie, Wang Rong-ben, Jin Li-sheng, Li Lin-hui, and Yang Lu, "Algorithm study for pedestrian detection based on monocular vision," Proc. IEEE Vehicular Electronics and Safety, pp. 83-87, Dec. 2006. https://doi.org/10.1109/ICVES.2006.371559
- G. Ma, S.-B. Park, S. Muller-Schneiders, A. Ioffe, and Kummert, "Vision-based Pedestrian Detection - Reliable Pedestrian Candidate Detection by Combining IPM and 1D Profile," Proc. IEEE Intelligent Transportation Systems, Seattle, USA, pp. 137-142, Sep. 2007. https://doi.org/10.1109/ITSC.2007.4357628
- G. Ma, A. Kummert, S.-B. Park, S. Muller-Schneiders, and A. Ioffe, "A symmetry search and filtering algorithm for vision based pedestrian detection system," SAE Technical Paper series, World Congress Detroit, Michigan, April 2008.
- T. Hashiyama, D. Mochizuki, Y. Yano, and S. Okuma, "Active frame subtraction for pedestrian detection from images of moving camera," Proc. IEEE International. Conference on Systems, Man and Cybernetics, pp. 480-485, 2003. https://doi.org/10.1109/ICSMC.2003.1243861
- C. Curio, J. Edelbrunner, T. Kalinke, C. Tzomakas, and W. von Seelen, "Walking pedestrian recognition," Proc. IEEE International Transactions on Transportation and System, vol. 1, no. 3, pp. 155-163, 2000. https://doi.org/10.1109/6979.892152
- S. Munder and D. M. Gavrila, "An experimential study on pedestrian classification," IEEE International Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1863-1868, 2006. https://doi.org/10.1109/TPAMI.2006.217
- M. Bertozzi, A. Broggi, M. Del Rose, M. Felisa, A. Rakotomamonjy, and F. Suard, "A pedestrian detector using histogram of oriented gradiants and a support vector machine classifier," Proc. IEEE Intelligent Transportation Systems, Seattle, USA, pp. 143-148, Sep. 2007. https://doi.org/10.1109/ITSC.2007.4357692
- J. B. Song, D.-W. Lee, and J.-T. Park, "Door detection with door handle recognition based on contour image and support vector machine," Journal of Institute of Control, Robotics and Systems(in Korean), vol. 16, no. 12, pp. 1226-1232, 2010. https://doi.org/10.5302/J.ICROS.2010.16.12.1226
- L. Jing, K.-H. Woo, and W.-H. Choi, "Gaze direction estimation method using support vector machines (SVMs)," Journal of Institute of Control, Robotics and Systems(in Korean), vol. 15, no. 4, pp. 379-384, 2009. https://doi.org/10.5302/J.ICROS.2009.15.4.379
- D. Chen, X. B. Cao, Y. W. Xu, and H. Qiao, "An evolutionary support vector machines classiffier for pedestrian detection," Proc. IEEE Intelligent Robots and Systems, Beijing, China, pp. 4223-4227, 2006. https://doi.org/10.1109/IROS.2006.281917
- L. Malago-Borja and O. Fuentes, "Object detection using image reconstruction with PCA," International Journal on Image and Vision Computing, doi: 10.1016/j.imavis.2007.03.004, 2007.
- X. B. Cao, Y. W. Xu, D. Chen, and H. Qiao, "Associated evolution of support vector machine-based classifier for pedestrian detection," International Journal on Information Science 179 (2009), pp. 1070-1077, 2009. https://doi.org/10.1016/j.ins.2008.10.020
- Q. B. Truong and B. R. Lee, "Vehicle detection algorithm using hypothesis generation and verification," Lecture Notes in Computer Science, Book Emerging Intelligent Computing Technology and Application, vol. 5754/2009, pp. 534-543, 2009.
- P. Viola and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," Proc. IEEE International Conference on Computer Vision and Parttern Recognition, vol. 1, pp. I-511-I-518, 2001. https://doi.org/10.1109/CVPR.2001.990517
- R. Lienhart and J. Maydt, "An extended set of haar-like features for rapid object detection," Proc. IEEE International Conference on In Image Processing, vol. 1, pp. I-900-I-903, 2002. https://doi.org/10.1109/ICIP.2002.1038171
- L. Breiman, J. Friedman, R. A. Olshen, R. and C. J. Stone, Classification and Regression Trees, Wadsworth, pp. 203-215, 1984.
- S. R. Gunn, "Support vector machine for classification and regression," Technical report of Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, University of Southampton, USA, 1998, http://users.ecs.soton.ac.uk.
- http://www.nicta.com.au/research/projects/AutoMap/computer_vision_datasets.
- C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "LIBSVM: a library for support vector machines," 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm11111.
Cited by
- HOG based Pedestrian Detection and Behavior Pattern Recognition for Traffic Signal Control vol.19, pp.11, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1858