References
- B. Z. Kaplan and D. Redev, "Dynamic stabilization of tuned-circuit levitators," IEEE Transactions on Magnetics, MAG-12, pp. 556-559, Sep. 1976. https://doi.org/10.1109/TMAG.1976.1059092
- D. A. Limbert, H. H. Richardson, and D. N. Wormley, "Controlled characteristics of ferromagnetic vehicle suspension providing simultaneous lift and guidance," Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 101, pp. 217-222, Sep. 1979. https://doi.org/10.1115/1.3426428
- F. J. Lin, L. T. Teng, and P. H. Sheh, "Intelligent adaptive backstepping control system for magnetic levitation apparatus," IEEE Transactions on Magnetics, vol. 43, no. 5, pp. 2009-2018, May. 2007. https://doi.org/10.1109/TMAG.2006.890325
- J. E. Pad, "State variable constraints on the performance of optimal maglev suspension controllers," Proc. of IEEE Conf. Control Applications, pp. 124-127, Aug. 1994. https://doi.org/10.1109/CCA.1994.381399
- P. S. Shiakolas and D. Piyabongkarn, "Development of a real-time digital control system with a hardware-in-the-loop magnetic levitation device for reinforcement of controls education," IEEE Transactions on Education, vol. 46, no. 1, pp. 79-87, Feb. 2003. https://doi.org/10.1109/TE.2002.808268
- P. S. Shiakolas, S. R. V. Schenck, D. Piyabongkarn, and I. Frangeskou, "Magnetic levitation hardware-in-the-loop and matlab-based experiment for reinforcement of neural network control concepts," IEEE Trans. Edu., vol. 47, pp. 33-41, Feb. 2004. https://doi.org/10.1109/TE.2003.817616
- D. Cho, Y. Kato, and D. Spilman, "Sliding mode and classical control magnetic levitations systems," IEEE Control Systems Magazine, vol. 13, pp. 42-48, Feb. 1993. https://doi.org/10.1109/37.184792
- A. E. Hajjaji and M. Ouladsine, "Modeling and nonlinear control of magnetic levitation systems," IEEE Transactions on industrial Electronics, vol. 48, no. 4, pp. 831-838, Aug. 2001. https://doi.org/10.1109/41.937416
- Z. J. Yang, Y. Fukushima, S. Kanae, and K. Wada, "Robust non-linear output-feedback control of a magnetic levitation system by k-filter approach," IET Control Theory & Applications, vol. 3, no. 7, pp. 852-864, July 2009. https://doi.org/10.1049/iet-cta.2008.0253
- Z. J. Yang, Y. Fukushima, S. Kanae, and K. Wada, "Adaptive robust output-feedback control of a magnetic levitation system by k-filter approach," IEEE Trans. Industrial, vol. 55, no. 1, pp. 390-399, Jan. 2008. https://doi.org/10.1109/TIE.2007.896488
- Z. J. Yang and M. Tateishi, "Adaptive robust nonlinear control of a magnetic levitation system," Automatica, vol. 37, pp. 1125-1131, May 2001. https://doi.org/10.1016/S0005-1098(01)00063-2
- J. H. Yang, T. S. Kim, S. Y. Shim, Y. S. Lee, and O. K. Kwon, "Actuator and sensor modeling for magnetic levitation system," Proc. Int. Conf. Control, Automation and Systems ICCAS '07, pp. 917-922, Oct. 2007.
-
M. Fujita and T. Namerikawa, "
${\mu}$ -synthesis of an electromagnetic suspension systems," IEEE Transactions on Automatic Control, vol. 40, no. 30, pp. 530-536, Mar. 1995. https://doi.org/10.1109/9.376075 - D. L. Trumper, "Linearizing control of magnetic suspension systems," IEEE Transactions on control Systems Technology, vol. 5, no. 4, pp. 427-438, July 1997. https://doi.org/10.1109/87.595924
- J.S. Choi and Y. S. Baek, "A single dof magnetic levitation system using time delay control and reduced-order observer," KSME International Journal, vol. 16, no. 12, pp. 1643-1651, Dec. 2002.
Cited by
- Dynamic Models of Hemispherical Resonator Gyros and Tests of Basic Control Characteristics vol.19, pp.10, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1899
- Performance Evaluation of Sliding Mode Control using the Exponential Reaching Law for a Magnetic Levitation System vol.20, pp.4, 2014, https://doi.org/10.5302/J.ICROS.2014.13.1968
- Artistic Emotional expression of Image distortion based on the magnetic force and user Immersion Through the Convergence of Art and Science Technology vol.13, pp.8, 2015, https://doi.org/10.14400/JDC.2015.13.8.457