DOI QR코드

DOI QR Code

3D Structure of STAM1 UIM-ubiquitin Complex Using RosettaDock

  • Lim, Jong-Soo (College of Pharmacy, Dongguk University-Seoul) ;
  • Yi, Jong-Jae (College of Pharmacy, CHA University) ;
  • Ahn, Hee-Chul (College of Pharmacy, Dongguk University-Seoul) ;
  • Rhee, Jin-Kyu (Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute) ;
  • Son, Woo-Sung (College of Pharmacy, CHA University)
  • Received : 2011.05.05
  • Accepted : 2011.05.27
  • Published : 2011.06.20

Abstract

3D structures of STAM1 UIM-ubiquitin complex were presented to predict and analyze the interaction between UIM and ubiquitin. To generate the protein-peptide complex structure, the RosettaDock method was used with and without NMR restraints. High resolution complex structure was acquired successfully and evaluated electrostatic interaction in the protein-peptide binding with several charged residues at the binding site. From docking results, the Rosettadock method could be useful to acquire essential information of protein-protein or protein-peptide interaction with minimal biological evidences.

Keywords

References

  1. V. Kirkin and I. Dikic, Curr Opin Cell Biol. 19, 199. (2007). https://doi.org/10.1016/j.ceb.2007.02.002
  2. C. Raiborg and H. Stenmark, Nature 458, 445. (2009). https://doi.org/10.1038/nature07961
  3. X. Ren and J. H. Hurley, EMBO J. 29, 1045. (2010). https://doi.org/10.1038/emboj.2010.6
  4. A. Lange, D. Hoeller, H. Wienk, O. Marcillat, J. M. Lancelin, and O. Walker, Biochemistry 50, 48. (2011). https://doi.org/10.1021/bi101594a
  5. Y. H. Hong, H. C. Ahn, J. Lim, H. M. Kim, H. Y. Ji, S. Lee, J. H. Kim, E. Y. Park, H. K. Song, and B. J. Lee, FEBS Lett. 583, 287. (2009). https://doi.org/10.1016/j.febslet.2008.12.034
  6. J. Lim, W. S. Son, J. K. Park, E. E. Kim, B. J. Lee, and H. C. Ahn, Biochemical and biophysical research communications 205, 24. (2011).
  7. J. Gray, S. Moughon, C. Wang, O. Schueler-Furman, B. Kuhlman, C. Rohl, and D. Baker, J Mol Biol. 331, 281. (2003). https://doi.org/10.1016/S0022-2836(03)00670-3
  8. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J Comput Chem. 25, 1605. (2004). https://doi.org/10.1002/jcc.20084
  9. M. S. Johnson, M. J. Sutcliffe, and T. L. Blundell, J Mol Evol. 30, 43. (1990). https://doi.org/10.1007/BF02102452
  10. E. Krissinel and K. Henrick, Acta Crystallogr D Biol Crystallogr. 60, 2256. (2004). https://doi.org/10.1107/S0907444904026460
  11. E. C. Meng, E. F. Pettersen, G. S. Couch, C. C. Huang, and T. E. Ferrin, BMC Bioinformatics 7, 339. (2006). https://doi.org/10.1186/1471-2105-7-339
  12. K. A. Swanson, R. S. Kang, S. D. Stamenova, L. Hicke, and I. Radhakrishnan, EMBO J. 22, 4597. (2003). https://doi.org/10.1093/emboj/cdg471
  13. N. London and O. Schueler-Furman, Proteins 69, 809. (2007) https://doi.org/10.1002/prot.21736
  14. N. London and O. Schueler-Furman, Structure 16, 269. (2008). https://doi.org/10.1016/j.str.2007.11.013
  15. K. G. Tina, R. Bhadra, and N. Srinivasan, Nucleic Acids Res. 35, W473. (2007). https://doi.org/10.1093/nar/gkm423
  16. C. Reynolds, D. Damerell, and S. Jones, Bioinformatics 25, 413. (2009). https://doi.org/10.1093/bioinformatics/btn584
  17. R. Koradi, M. Billeter, and K. Wüthrich, J Mol Graph. 14, 51. (1996). https://doi.org/10.1016/0263-7855(96)00009-4
  18. E. Leonardi, S. Andreazza, S. Vanin, G. Busolin, C. Nobile, and S. C. E. Tosatto, PLoS ONE 6, e18142. (2011) https://doi.org/10.1371/journal.pone.0018142
  19. B. Busby, T. Oashi, C. D. Willis, M. A. Ackermann, A. Kontrogianni-Konstantopoulos, A. D. Mackerell, and R. J. Bloch, J Mol Biol. 408, 321. (2011). https://doi.org/10.1016/j.jmb.2011.01.053