DOI QR코드

DOI QR Code

Analysis of Scaling Parameters of the Batch Unscented Transformation for Precision Orbit Determination using Satellite Laser Ranging Data

  • Kim, Jae-Hyuk (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Kim, Young-Rok (Astrodynamics and Control Lab., Department of Astronomy, Yonsei University) ;
  • Park, Eun-Seo (Korea Astronomy and Space Science Institute) ;
  • Jo, Jung-Hyun (Korea Astronomy and Space Science Institute) ;
  • Lim, Hyung-Chul (Korea Astronomy and Space Science Institute) ;
  • Park, Jang-Hyun (Korea Astronomy and Space Science Institute) ;
  • Park, Jong-Uk (Korea Astronomy and Space Science Institute)
  • Received : 2011.08.03
  • Accepted : 2011.08.31
  • Published : 2011.09.15

Abstract

The current study analyzes the effects of the scaling parameters of the batch unscented transformation on precision satellite orbit determination. Satellite laser ranging (SLR) data are used in the orbit determination algorithm, which consists of dynamics model, observation model and filtering algorithm composed of the batch unscented transformation. TOPEX/Poseidon SLR data are used by utilizing the normal point (NP) data observed from ground station. The filtering algorithm includes a repeated series of processes to determine the appropriate scaling parameters for the batch unscented transformation. To determine appropriate scaling parameters, general ranges of the scaling parameters of ${\alpha}$, ${\beta}$, k, $\lambda$ are established. Depending on the range settings, each parameter was assigned to the filtering algorithm at regular intervals. Appropriate scaling parameters are determined for observation data obtained from several observatories, by analyzing the relationship between tuning properties of the scaling parameters and estimated orbit precision. The orbit determination of satellite using the batch unscented transformation can achieve levels of accuracy within several tens of cm with the appropriate scaling parameters. The analyses in the present study give insights into the roles of scaling parameters in the batch unscented transformation method.

Keywords

References

  1. Bertiger WI, Bar-Server YE, Christensen EJ, Davis ES, Guinn JR, et al., GPS tracking of TOPEX/POSEIDON: results and implications, JGR, 99, 24449-24464 (1994). http://dx.doi.org/10.1029/94JC01171
  2. Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, et al., A new global earth's gravity field model from satellite orbit perturbations: GRIM5-S1, GeoRL, 27, 3611-3614 (2000). http://dx.doi.org/10.1029/2000GL011721
  3. Grewal MS, Andrews AP, Kalman filtering: theory and practice using MATLAB, 3rd ed. (University California, Wiley, New York, 2008), 330-344.
  4. Howlett P, Pudney P, Vu X, Estimation train parameters with an unscented Kalman filter, in Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems Conference, Gold Coast, Australia, 12-18 Dec 2004, 34.13.1-34.13.10.
  5. Julier SJ, The scaled unscented transformation, in Proceedings of the American Control Conference, Anchorage, AK, 8-10 May 2002, 4555-4559. http://dx.doi.org/10.1109/ACC.2002.1025369
  6. Julier SJ, Uhlmann JK, Durrant-Whyte HF, A new approach for filtering nonlinear systems, in Proceedings of the American Control Conference, Seattle, WA, 21-23 Jun 1995, 1628-1632. http://dx.doi.org/10.1109/ACC.1995.529783
  7. Julier SJ, Uhlmann JK, Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations, in Proceedings of the American Control Conference, Anchorage, AK, 8-10 May 2002, 887-892. http://dx.doi.org/10.1109/ACC.2002.1023128
  8. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, et al., The development of the joint NASA GSFC and NIMA geopotential model EGM96, NASA Goddard Space Flight Center technical manual, NASA/TP-1998-206861 (1998).
  9. Lyndon B, Jacchia-Lineberry upper atmosphere density model, NASA Johnson Space Center contract report, NASA/CR-1982-167824 (1982).
  10. Marini JW, Murray CW, Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees, NASA Goddard Space Flight Center technical report, NASA/TM-X-70555 (1973).
  11. Melbourne WG, Davis ES, Yunck TP, Tapley BD, The GPS flight experiment on TOPEX/POSEIDON, GeoRL, 21, 2171-2174 (1994). http://dx.doi.org/10.1029/94GL02192
  12. Montenbruck O, Gill E, Satellite orbits: models, methods, and applications, (Springer, New York, 2000), 202-228.
  13. Park E-S, Park S-Y, Roh K-M, Choi K-H, Satellite orbit determination using a batch filter based on the unscented transformation, Aerosp Sci Technol, 14, 387-396 (2010). http://dx.doi.org/10.1016/j.ast.2010.03.007
  14. Park E-S, Roh K-M, Park S-Y, Choi K-H, Satellite precise orbit determination using a new batch least squares, in AAS/AIAA Astrodynamics Specialist Conference, Sedona, AZ, 29 Jan 2007.
  15. Schutz BE, Tapley BD, Abusali PAM, Rim HJ, Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON, GeoRL, 21, 2179-2182 (1994). http://dx.doi.org/10.1029/94GL01040
  16. Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S, Contribution of SLR tracking data to GNSS orbit determination, AdSpR, 39, 1515-1523 (2007). http://dx.doi.org/10.1016/j.asr.2007.01.038
  17. Vallado DA, McClain WD, Fundamentals of astrodynamics and applications, 2nd ed. (Microcosm Press, Kluwer Academic Publishers, Boston, 2001), 489-564.
  18. Wan EA, van der Merwe R, The unscented Kalman filter, in Kalman filtering and neural networks, ed. Haykin SS (Wiley, New York, 2001), 221-269.
  19. Yunck TP, Bertiger WI, Wu SC, Bar-Sever YE, Christensen EJ, et al., First assessment of GPS-based reduced dynamic orbit determination on TOPEX/Poseidon, GeoRL, 21, 541-544 (1994). http://dx.doi.org/10.1029/94GL00010
  20. Zhu SY, Reigber C, Kang Z, Apropos laser tracking to GPS satellites, JGeod, 71, 423-431 (1997). http://dx.doi.org/10.1007/s001900050110

Cited by

  1. Non-recursive estimation using a batch filter based on particle filtering vol.66, pp.10, 2013, https://doi.org/10.1016/j.camwa.2013.05.029
  2. Precise orbit determination using the batch filter based on particle filtering with genetic resampling approach vol.54, pp.6, 2014, https://doi.org/10.1016/j.asr.2014.06.001
  3. Identification of synchronous generator model with frequency control using unscented Kalman filter vol.126, 2015, https://doi.org/10.1016/j.epsr.2015.04.016
  4. The challenge of precise orbit determination for STSAT-2C using extremely sparse SLR data vol.57, pp.5, 2016, https://doi.org/10.1016/j.asr.2015.12.031
  5. Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis vol.32, pp.3, 2015, https://doi.org/10.5140/JASS.2015.32.3.189