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ABSTRACT

Blind equalization techniques have been widely used in wireless communication systems. In

this paper, we propose to apply the balanced information potentials to the criterion of minimum

Euclidian distance between two PDFs with constant modulus errors for adaptive blind equalizers.

One of the two PDFs is constructed with constant modulus error samples and another does with

Dirac delta functions. Two information potentials derived from the criterion are balanced in order

to have better performance by putting

a weighting factor to each information potentials. The

proposed blind algorithm has shown in the MSE convergence performance that it can produce

enhanced performance by over 3 dB of steady state MSE.

Keywords :

1. Introduction

Multipoint communication networks and the
wireless broadcasting networks require efficient
blind equalizers to cope with intersymbol inter—
ference in the environment that training se-
quences are not available [1][2].

Most blind algorithns are developed based on
mean-squared-error (VSE) ariterion for minimization of
constant modulus error (CME). Ore of the drawbacks
of MSE criterion can be the truth that it utilizes only
second order statistics such as error power. The
constant modulus algorithm (CMA) popularly being
used is to use the second order statistics for CME.
In the recently developed information theoretic op—
timization criteria, higher order informations are
utilized in that optimization method introduced by

Blind equalization, PDF, Constant modulus error, balanced, Information potential

Princepe [3]. This approach is to adjust the
adaptive system based on a combination of a
nonparametric kernel density estimator for prob-—
ability density function (PDF) and a procedure
to compute entropy or information potential (IP)
[3]. For approximating Shannon’s entropy,
Renyi’s generalized entropy [4] is employed by
way of the kernel density estimation method
with a Gaussian kernel [5]. The Renyi entropy
with the Kernel density method leads to an es—
timation of information potential defined as in-—
teractions among pairs of samples.

For CME, when the error PDF is forced to
match the delta function, the CME samples
gather together around zero by minimizing the
distance between the error PDF and the delta
function [6] which is a different approach from
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the error-entropy minimization in  blind
In error-entropy method [7] the
difference of two error samples are used. This

equalization.

error distance can have valuable information
about error distribution in supervised systems,
but in CME-type blind equalization the error
difference between two CMEs loses the im-—
portant information of constant modulus value,
so that error-entropy method with CME can not
be employed in blind equalization.

In the process of minimizing the distance be-
tween the PDF of CME and the Dirac delta func-
tion, the interactions among CMEs are revealed to
have two information potentials acting towards op—
posite directions in this research, so we propose in
this paper to balance the two IPs in order to miti—
gate their conflicts in the IP field.

2. The Distance of CME-PDF and
Dirac delta function

When L -ary PAM signaling systens with L levels
being equally likely to be transmitted are emmployed and
the transmitted levels 4iare 4, =2/-1-L [=12..L,
the constant nodulus R, becones

R =El4['VEIA[T )

In this section we introduce briefly the dis—
tance between the PDF of CME and the
Dirac—delta function [6]. With the definition of
ecm:‘yk‘Z*Rz, we can describe the distance
D[ feu (ecye ) 6(ecys I between  the two PDFs, the
CME-PDF  fouwz(€awe) and Dirac—delta function

S(eqyr) as

D feye (€cre 15 ecye)) = [ oy ()dE+[ 87 (E)dE
=2 feue(D3(£)dE ©)

From the research [6] we can notice the first
term on the right side _[ four($)dé is the in-
formation potential for CMEs, so we write it as

Vewein this paper.
Then we obtain

DU e Cec )8 (€)1 = Ve +1=2f i (0)
3

Since we can also remove the constant term
from (3) for it is not controllable, the mini-

mization of Dlfeue(ec)>O(ecs)l remains as the

new criterion for constant modulus errors.
muin{VCME - ZfL'ME (0)} (4)

For convenience sake, we refer to (4) as
minimum ED for CME (MED-CME) criterion.
Using the kernel density estimation method
[5], the PDF of CME Jfoue(ecur) with Gaussian
kernel and a block of N CME samples can be
described as

1 k
Jous(ecus) = ﬁi:kZNfg (€cur —€cue,i) )

The kemel density estimation method can

make us write the IP Veurin (4) as follows:

Vewr = J..f(gME (&)ds

1 k k
=72 G_slecys,; —e )
N2 i:l;ﬂj:;’ﬂ o2 CME: M-S (6)

From (6) with €ar=0, the probability

f CME 0) in (4) becomes

k

1
Jous(0) = N i:z G, (—ecz,) )

k—N+1
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Then the cost function Fewe-ser of MED-CME
criterion becomes

1 k k
Povig-sep = F z Z Gcﬁ (€ —€cue, ,)

i=k—N+1 j=k-N+1

1 k
—2— NG, (~epyyr,
Ni:kZNHU( €cyi,) @®)
3. The proposed Algorithm with
Balanced Information Potentials
. . 2 .
By inserting ¢ow =% ~R. into the pro-
posed cost function Fewe-mer and using a block
of past output samples Y :{yk,ykfw-»qu}, the

cost function Feve-uen [8] can be rewritten as

1 k k
Pevie szp = z ZGJﬁ(Yi ’ _‘yj‘z)
1

2
N i=k=N+1 j=k-N+

’ _Rz])

k
>G, (-,
i=k—N+1

©

=

The first term on the right side which was
the information potential for CMEs now has be-
come the information potential for output sam-—
ples so that we can express it as Vevs-we (0>)) .
We also can treat the second term on that side
as an Interaction among instant output powers
and constant modulus, therefore it can be de-
fined here as another information potential,

Vore-uzn(Ry> ). Then the cost function Fewr-uep
can be rewritten as Fouw-uep =Verr-sen (V> )
=2 Vear-uep(R2,¥) . The two information poten—
tials Voo (5| Vews-suen (R, ¥) contribute  to
minimizing the cost function (8). An important

aspect to be noticed is that when Vewr-sen(¥>¥)
decreases, it contributes positively to mini—

mization of the cost function, while

Vere-ven(R2,¥) has to decrease in order to con—

tribute to the minimization process. This leads
us to the truth that the two information poten-—
tials are pushing and pulling each other on min—
imization process of the cost function. If we
place some balanced point on the line of influen—
ces from the two information potentials, we
might be able to find an optimal balance of
forces between the two information potentials.
From this motivation, we propose to put a
weighting factor a to the information potentials

Vers-uen(3¥)  and  Vews-sen (Ros¥)to balance  their
effect on the cost function as

P, proposed — Veriz-sien (Vs 3) @

=2 Vs (Ry, ) (1- @) (10)

Now we apply the gradient descent method
for the minimization of the cost function (10).
The gradient is evaluated from

OP o L3 L ) 2
proposed
vy T T (il =)
6Wk o’N? i:chN+lj:kZN+l ‘ J‘
2 2 * *
Gl = DA -px)
2(1l-a) <& 2
- (2 ) zGa(yi -R,))
< i=k—N-+1
2 .
(R, -y, )'yz"Xi, 11

Using this gradient, we can write the pro—
posed algorithm (we will refer to this in this
paper as Balanced-MED-CME) as

a k K ) )
VVA-HZVVk_ﬂ[O_zNZ Z Z(J/i _‘y/“ )
i=k—N+1 jmk—N+1
2 2 * *
G, 5l =y, DX =v XD
2(0-a) & 2
- G. (v, -R
oIN l:/;“-lo‘(yr ,)
2 .
By =)y X ] (12)

where # is the step-size for convergence
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control of the proposed algorithm.

4. Simulation results and
Discussion

For performance evaluation, in this section,
we present and discuss simulation results that
illustrate the comparative performance of the
proposed algorithm versus MED-CME in blind

equalization. The 4 level random signal {+3,£1}
is transmitted to the channel and the impulse

response, /i of the channel model in [9] is

1
hi:E{1+COS[2ﬂ(l—2)/BW]}, i:1,2,3 (13)

where BW =33, the eigenvalue spread ratio
ESR=21.71. The number of weights is set to 11.
The step-size for convergence control 1is
#=0.006 The data-block size VNV = 20 and

the fixed kemel size o = 0.5. The in-
formation potential weighting factor < is set to
2. The MSE curve performance of the
MED-CME algorithm and the proposed is illus—
trated in Fig. 1.
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Fig. 1. MSE convergence performance
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Fig. 2. Probability density for errors

In case of channel 1 with ESR=11.12, the
MSE performance in Fig. 1 shows that the con—
ventional MED-CME converges to -23 dB of
steady state MSE, while the proposed algorithm
reaches -27 dB. The proposed algorithm gives
enhanced performance by above 3 dB of steady
state MSE with faster convergence speed in
comparison with MED-CME. In Fig. 2, the sys—
tem error densities are shown and their per—
formance difference is clearer showing the sys-—
tem error distribution of the proposed algorithm
more concentrated around zero.

5. Conclusion

In this paper, a new algorithm balancing two
information potentials derived from the criterion
of minimizing PDF-distance between the PDF of
constant modulus error and Dirac delta function
is presented. By placing a appropriate weighting
value on the proposed balancing equation com-—
posed of the two information potentials, the pro—
posed method is proved to produce significantly
enhanced performance in blind equalization.
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