DOI QR코드

DOI QR Code

In vitro Activities of Polycalcium, a Mixture of Polycan and Calcium Lactate-Gluconate, on Osteoclasts and Osteoblasts

In vitro에서 polycalcium 복합조성물이 파골세포와 조골세포에 미치는 영향

  • Choi, Jae-Suk (RIS Center, Industry-Academic Cooperation Foundation, Silla University) ;
  • Kim, Joo-Wan (Glucan Corp. Research Institute, Marine Bio-industry Development Center) ;
  • Kim, Ki-Young (Glucan Corp. Research Institute, Marine Bio-industry Development Center) ;
  • Cho, Hyung-Rae (Glucan Corp. Research Institute, Marine Bio-industry Development Center) ;
  • Ha, Yu-Mi (RIS Center, Industry-Academic Cooperation Foundation, Silla University) ;
  • Ku, Sae-Kwang (Department of Anatomy and Histology, College of Oriental Medicine, Daegu Haany University) ;
  • Cho, Kwang-Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology) ;
  • Choi, In-Soon (RIS Center, Industry-Academic Cooperation Foundation, Silla University)
  • Received : 2011.05.17
  • Accepted : 2011.07.27
  • Published : 2011.08.30

Abstract

The present study evaluated the beneficial effects of polycalcium (a mixture of Polycan and calcium lactate-gluconate 1:9 [g/g]) on osteoporosis using in vitro assays. Cell proliferation and alkaline phosphatase activities of osteoblasts (human primary osteoblasts) and osteoclast differentiation of RAW264.7 cells (murine osteoclast progenitor cells) treated with different concentrations of polycalcium for various periods were assessed. Osteoblast proliferation was stimulated and prevented RANKL-induced osteoclast differentiation of RAW264.7 cells. These results support the development of ideal anti-osteoporotic agents, such as polycalcium, that exhibit properties that accelerate bone formation and inhibit bone resorption.

본 실험에서는 폴리칸(베타-글루칸)과 칼슘 락테이트 글루코네이트 1:9 (g/g) 복합 조성물인 Polycalcium의 시험관 내(in vitro) 골다공증에 대한 효과를 사람 유래 조골세포(human primary osteoblast)와 설치류 유래 파골 전구세포(raw264.7 cell)를 이용하여 평가하였다. Polycalcium이 조골세포에 미치는 영향을 확인한 결과, 10 mg/ml 농도의 polycalcium 처리군에서 무처리 대조군에 비해 유의성 있는 조골세포의 수적 증가가 각각 배양 3, 7 및 10일 후에 확인되었으며, 또한 10 mg/ml 농도의 polycalcium 처리군에서 무처리 대조군에 비해 유의성있는 ALP함량의 증가가 확인되었다. Polycalcium이 파골세포에 미치는 영향을 확인한 결과, 각각 $10^{-5}$, $10^{-3}$$10^{-1}$ mg/ml polycalcium 처리군에서 무처리 대조군에 비해 유의성 있는 파골세포의 수적 감소가 배양 4일 후에 확인되었다. 이 같은 결과를 바탕으로, polycalcium이 조골세포의 증식 촉진 효과와 함께 파골세포 형성 억제 효과가 있는 것으로 확인되었다.

Keywords

References

  1. Aubin, J. E. 2001. Regulation of osteoblast formation and function. Reviews in Endocrine & Metabolic Disorders 2, 81-94. https://doi.org/10.1023/A:1010011209064
  2. Benayahu, D. 2000. The hematopoietic microenvironment: The osteogenic compartment of bone marrow: Cell biology and clinical application. Hematology 4, 427-435.
  3. Chen D., M. Zhao, and G. R. Mundy. 2004. Bone morphogenetic proteins. Growth Factors 22, 233-241. https://doi.org/10.1080/08977190412331279890
  4. Feldmann, M., F. M. Brennan, and R. N. Maini. 1996. Rheumatoid arthritis. Cell 85, 307-310. https://doi.org/10.1016/S0092-8674(00)81109-5
  5. Goldring, S. R. and E. M. Gravallese. 2002. Pathogenesis of bone lesions in rheumatoid arthritis. Curr. Rheumatol. Rep. 4, 226-231. https://doi.org/10.1007/s11926-002-0069-y
  6. Gowen, M., J. G. Emery, and S. Kumar. 2000. Emerging therapies for osteoporosis. Emerging Drugs 5, 1-43. https://doi.org/10.1517/14728214.5.1.1
  7. Heaney, R. P., R. R. Recker, P. Watson, and J. M. Lappe. 2010. Phosphate and carbonate salts of calcium support robust bone building in osteoporosis. Am. J. Clin. Nutr. 92, 101-105. https://doi.org/10.3945/ajcn.2009.29085
  8. Hendry, J. A., B. G. Jeansonne, C. O. Dummett Jr, and W. Burrell. 1982. Comparison of calcium hydroxide and zinc oxide and eugenol pulpectomies in primary teeth of dogs. Oral. Surg. Oral. Med. Oral. Pathol. 54, 445-551. https://doi.org/10.1016/0030-4220(82)90394-2
  9. Hwang, Y. H., J. W. Lee, E. R. Hahm, K. C. Jung, J. H. Lee, C. H. Park, H. S. Rhee, J. M. Ryu, H. K. Kim, C. H. Yang, and I. Momordin. 2005. an inhibitor of AP-1, suppressed osteoclastogenesis through inhibition of NF-kappaB and AP-1 and also reduced osteoclast activity and survival. Biochem. Biophys. Res. Commun. 337, 815-823. https://doi.org/10.1016/j.bbrc.2005.09.113
  10. Jimi, E., S. Akiyama, T. Tsurukai, N. Okahashi, K. Kobayashi, N. Udagawa, T. Nishihara, N. Takakashi, and T. Suda. 1999. Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J. Immun. 163, 434-442.
  11. Kim, H. D., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, H. J. Jang, L. S. Kim, H. S. Lee, and S. K. Ku. 2006. Effect of Exopolymers from Aureobasidum pullulans on formalin-induced chronic paw inflammation in mice. J. Microbiol. Biotechnol. 16, 1954-1960.
  12. Kim, H. D., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, H. J. Jang, L. S. Kim, H. S. Lee, and S. K. Ku. 2007. Effects of $\beta$-glucan from Aureobasidum pullulans on acute inflammation in mice. Arch. Pharm. Res. 30, 323-328. https://doi.org/10.1007/BF02977613
  13. Komori, T. 2003. Requisite roles of Runx2 and Cbfb in skeletal development. J. Bone Miner. Metab. 21, 193-197.
  14. Lee, H. S., H. R. Cho, S. B. Moon, H. D. Shin, K. J. Yang, B. R. Park, H. J. Jang, L. S. Kim, and S. K. Ku. 2008. Effect of $\beta$-glucan from Aureobsidium pullulans on rat rib fracture healing. Lab. Anim. Res. 24, 39-44.
  15. Rodan, G. A. and T. J. Martin. 2000. Therapeutic approaches to bone diseases. Science 289, 1508-1514. https://doi.org/10.1126/science.289.5484.1508
  16. Seo, H. P., J. M. Kim, H. D. Shin, T. K. Kim, H. J. Chang, B. R. Park, and J. W. Lee. 2002. Production of $\beta$-1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Korean J. Bitechnol. Bioeng. 17, 376-380.
  17. Shin, H. D., K. J. Yang, B. R. Park, C. W. Son, H. J. Jang, and S. K. Ku. 2007. Antiosteoporotic effect of Polycan, beta-glucan from Aureobasidium, in ovariectomized osteoporotic mice. Nutrition 23, 853-860. https://doi.org/10.1016/j.nut.2007.08.011
  18. Smith, M. M., P. Ghosh, Y. Numata, and M. K. Bansal. 1994. The effects of orally administered calcium pentosan polysulfate on inflammation and cartilage degradation produced in rabbit joints by intraarticular injection of a hyaluronate- polylysine complex. Arthritis. Rheum. 37, 125-136. https://doi.org/10.1002/art.1780370118
  19. Song, H. B., D. C. Park, G. M. Do, S. L. Hwang, W. K. Lee, H. S. Kang, B. R. Park, H. J. Jang, C. W. Son, E. K. Park, S. Y. Kim, and T. L. Huh. 2006. Effect of exopolymers of Aureobasidium pullulans on improving osteoporosis induced in ovariectomized mice. J. Microbiol. Biotechnol. 16, 37-45.
  20. Sosa, M. and C. Bregni. 2003. Metabolism of the calcium and bioavailability of the salts of most frequent use. Boll. Chim. Farm. 142, 28-33.
  21. Suda, T., I. Nakamura, E. Jimi, and N. Takahashi. 1997. Regulation of osteoclast function. J. Bone Miner. Res.12, 869-879. https://doi.org/10.1359/jbmr.1997.12.6.869
  22. Suda, T., N. Udagawa, and N. Takahashi. 1996. Osteoclast generation, p. 87, In Raisz L. G., G. A. Rodan and J. P. Bilezikian (eds.), Principles of Bone Biology. Academic Press, San Diego, CA. USA.
  23. The Korean Nutrition Society. 2010. Dietary reference intakes for Koreans. 341-356.
  24. The Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. 2009. Korea Health Statistics 2009: Korea national health and nutrition examination survey (KNHANES IV-3). 28-31.
  25. Yamaguchi, K., M. Yada, T. Tsuji, M. Kuramoto, and D. Uemura. 1999. Suppressive effect of norzoanthamine hydrochloride on experimental osteoporosis in ovariectomized mice. Biol. Pharm. Bull. 22, 920-924. https://doi.org/10.1248/bpb.22.920

Cited by

  1. Safety and Efficacy of Polycalcium for Improving Biomarkers of Bone Metabolism: A 4-Week Open-Label Clinical Study vol.16, pp.3, 2013, https://doi.org/10.1089/jmf.2012.2537
  2. Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091906