DOI QR코드

DOI QR Code

농업용 저수지에서 환경 요인이 Microcystis aeruginosa (cyanobacteria) 성장에 미치는 영향

Effect of Environmental Factors on the Growth of Microcystis aeruginosa (Cyanobacteria) in Agricultural Reservoirs

  • 권오창 (안동대학교 자연과학대학 생명과학과) ;
  • 박정원 (국립공원연구원) ;
  • 정규영 (안동대학교 자연과학대학 생약자원학) ;
  • 이종은 (안동대학교 자연과학대학 생명과학과) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • Kwon, O-Chang (Department of Biological Science, Andong National University) ;
  • Park, Jung-Won (National Park Research Institute) ;
  • Chung, Gyu-Young (Department of Medicinal Plant Resource, Andong National University) ;
  • Lee, Jong-Eun (Department of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Department of Biological Science, Andong National University)
  • 투고 : 2011.06.23
  • 심사 : 2011.08.22
  • 발행 : 2011.08.30

초록

본 연구는 경북 안동시 풍천면에 소재한 농업용 저수지인 호민지와 가곡지에서 수계의 물리 화학적 환경요인이 수화현상에 미치는 영향을 알아보고자 하였다. 수온, chlorophyll-a, 총질소, 총인, 인산염인의 평균값은 가곡지가 높았다. 반면에 pH의 평균값은 호민지가 높았다. 미량원소 (Na, K, Mg, Fe, Si)의 평균값은 모두 가곡지에서 높았다. 두 저수지에서 수화현상을 일으킨 남조류는 Microcystis aeruginosa였고, 5월부터 발생하기 시작하여 8월에 최대의 현존량을 나타냈다. M. aeruginosa의 현존량 증가와 수질과의 상관관계에서 호민지에서 $Na^+$ (r=-0.910, p<0.05), $Fe^{2+}$ (r=-0.855, p<0.05)와 $Si^{4+}$ (r=0.989, p<0.01)가 현존량 증가와 높은 상관관계를 보였고 가곡지에서는 $Na^+$ (r=-0.776, p<0.05), $Si^{4+}$ (r=0.899, p<0.05)가 현존량 증가와 높은 상관관계를 보였다. 규조류의 제한요인인 Si가 남조류 현존량과 상관관계가 높은 것은 매우 특이하다. 결론적으로 수화현상 발생에는 가장 중요한 영양염인 질소와 인뿐만 아니라 여러 요인들의 복합적 작용으로 발생하는 것으로 생각된다.

The present study is aimed at examining the effects of the physico-chemical environmental factors of water systems on water bloom at Homin and Gagok reservoirs in Pungcheon-Myeon, Andong, Gyeongsangbuk-do. The mean water temperature and the contents of chlorophyll-a, total-nitrogen, total-phosphorus and phosphate-phosphorus were higher at the Gagok reservoir. On the other hand, the pH mean value was higher at the Homin reservoir. The mean value of microelements (Na, K, Mg, Fe, Si) was higher at the Gagok reservoir. The cyanobacteria which was considered to be the cause of water bloom at the two reservoirs was Microcystis aeruginosa. It started to grow in May and showed the highest standing crop in August. Between the increase of standing crop of M. aeruginosa and the water quality, correlation values of $Na^+$ (r=-0.910, p<0.05), $Fe^{2+}$ (r=-0.855, p<0.05) and $Si^{4+}$ (r=0.989, p<0.01) at the Homin reservoir increased amount of standing crop. Meanwhile, at the Gagok reservoir, the contents of $Na^+$ (r=-0.776, p<0.05), $Si^{4+}$ (r=0.899, p<0.05) were highly related to the increase of standing crop. Interestingly, Si, which is the limiting factor for diatoms, has a high correlation with standing crop of cyanobacteria. In conclusion, the water blooming is caused not by a simple factor but a synergistic effect due to complex actions including high concentrations of nitrogen and phosphorus ions and many other environmental factors.

키워드

참고문헌

  1. Amemiya, Y. and O. Nakayama. 1984. The chemical composition and metal adsorption capacity of the sheath material isolated from Microcystis, cyanobacteria. Jpn. J. Limnol. 45, 187-193. https://doi.org/10.3739/rikusui.45.187
  2. Amemiya, Y., K. Kato, T. Okino, and O. Nakayama. 1990. Changes in the chemical composition of carbohydrates and proteins in surface water during a bloom of Microcystis in Lake Suwa. Ecol. Res. 5, 153-162. https://doi.org/10.1007/BF02346987
  3. APHA. 1995. Standard methods for the examination of water and wastewater. 19th eds., APHA-AWWA-WPCF. New York.
  4. Axler, R. P., R. M. Gersberg, and C. R. Goldman. 1980. Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California. Can. J. Fish. Aquat. Sci. 37, 707-712. https://doi.org/10.1139/f80-089
  5. Chorus, I. and J. Bartman. 1999. Toxic cyanobacteria in water : a guide to their public health consequences, monitoring and management. pp. 89-93, 1th ed., E&FN Spon, London and New York.
  6. Horen, A. J. and C. R. Goldman. 1994. Limnology. pp. 576, 2th eds., McGraw Hill. New York.
  7. Kim, H. J., K. S. Yoon, and K. S. Lee. 2003. Characteristics of the water quality of wanggung agricultural reservor. KCID J. 10, 24-35.
  8. Lee, J. S., Y. C. Kim, and G. S. Hwang. 2003. Changes of the sediment properties in small agricultural reservoirs before and after rainy season. J. Korean Soc. Civil Engin. 23, 359-368.
  9. Lee, J. Y., J. H. Lee, K. H. Shin, S. J. Hwang, and K. G. An. 2007. Trophic state and water quality characteristics of korean agricultural reservoirs. Korean J. Limnol. 40, 223-233.
  10. McQueen, D. J. and D. R. S. Lean. 1987. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can. J. Fish. Aquat. Sci. 44, 598-604. https://doi.org/10.1139/f87-073
  11. Nakagawa, M., Y. Takamura, and O. Yagi. 1987. Isolation and characterization of the slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agric. Biol. Chem. 51, 329-337. https://doi.org/10.1271/bbb1961.51.329
  12. North, R. L., S. J. Guildford, R. E. H. Smith, S. M. Havens, and M. R. Twiss. 2007. Evidence for phosphorus, nitrogen, and iron co-limitation of phytoplankton communities in Lake Erie. Limnol. Oceanogr. 52, 315-328. https://doi.org/10.4319/lo.2007.52.1.0315
  13. Park, J. W. and D. K. Kwon. 1998. A study on early development of water bloom by blue-green algae in lake Hapchon - I. relationship between increasing standing crop of Microcystis aeruginosa Kuetz and concentration of $K^+$, $Na^+$, $Mg^{2+}$ and $Ca^{2+}$ in water system. Korean J. Limnol. 31, 97-102.
  14. Reynolds, C. S. 1993. The ecology of freshwater phytoplankton. pp. 384, Cambridge University Press, Cambridge.
  15. Sigee, D. C., J. Teper, and E. Levado. 1999. Elemental composition of the cyanobacterium Anabaena flos-aquae collected from different depths within a stratified lake. Eur. J. Phycol. 34, 477-485. https://doi.org/10.1080/09541449910001718831
  16. Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221, 669-671. https://doi.org/10.1126/science.221.4611.669
  17. Smith, V., H. Willen, and B. Karlsson. 1987. Predicting the summer peak biomass of four species of blue-green algae (cyanophyta/cyanobacteria) in Swedish Lakes. Water Resour. Bull. 23, 397-402. https://doi.org/10.1111/j.1752-1688.1987.tb00818.x
  18. Sterner, R. W., T. M. Smutka, R. M. L. McKay, Q. Xiaoming, E. T. Brown, and R. M. Sherrell. 2004. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr. 49, 495-507. https://doi.org/10.4319/lo.2004.49.2.0495
  19. Sterner, R. W. 1994. Seasonal, and spatial patterns in macro- and micronutrient limitation in Joe Pool Lake, Taxas. Limnol. Oceanogr. 39, 535-550. https://doi.org/10.4319/lo.1994.39.3.0535
  20. Takamura, N. and M. M. Watanabe. 1987. Seasonal changes in the biomass of four species of Microcystis in Lake Kasumigaura. Jpn. J. Limnol. 48, 139-144. https://doi.org/10.3739/rikusui.48.Special_139
  21. Xie, L., P. Xie, S. Li, H. Tang, and H. Liu. 2003. The low TN:TP ratio, a cause or a result of Microcystis blooms?. Water Res. 37, 2073-2080. https://doi.org/10.1016/S0043-1354(02)00532-8

피인용 문헌

  1. Application of an Algal Bloom Control Technique using Large Zooplankton Predators in An Eutrophic Agricultural Reservoir: A Preliminary Study vol.65, 2016, https://doi.org/10.1002/ird.2070