References
- Alam, M. Z., S. A. Muyibi, and R. Wahid. 2008. Statistical optimization of process conditions for cellulose production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technol. 99, 4709-4716. https://doi.org/10.1016/j.biortech.2007.09.072
- Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzym. Microb. Technol. 21, 12-17. https://doi.org/10.1016/S0141-0229(96)00207-4
- Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzannares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharfication and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
- Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
- Chakraborty, K. and R. P. Raj. 2008. An extra-cellular alkaline metallolipase from Bacills licheniformis MTCC 6824: purification and biochemical characterization. Food Chem. 109, 727-736. https://doi.org/10.1016/j.foodchem.2008.01.026
- Chen, H. and S. Jin. 2006. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzym. Microb. Technol. 39, 1430-1432. https://doi.org/10.1016/j.enzmictec.2006.03.027
- Chun, J. 1995. Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis, University of Newcastle, Newcastle upon Tyne, UK.
- Emtiazi, G. and I. Nahvi. 2000 Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
- Gavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37, 273-277. https://doi.org/10.1016/S0144-8617(98)00070-8
- Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnol. 3, 722-726. https://doi.org/10.1038/nbt0885-722
-
Hmidet, N., A. Bayoudh, J. G. Berrin, S. Kanoun, N. Jude, and M. Nasri. 2008. Purification and biochemical characterization of a novel
$\alpha$ -amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Esherichia coli. Process Biochem. 43, 499-510. https://doi.org/10.1016/j.procbio.2008.01.017 - Jecu, L. 2000. Solid state fermentation of agricultural wastes for endogulcanse production. Ind. Crops Prod. 11, 1-5. https://doi.org/10.1016/S0926-6690(99)00022-9
- Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Jung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
- Kalogeris, E., P. Christakopoulos, P. Katapodis, A. Alexious, S. Vlachou, D. Kekos, and B. J. Macris. 2003. Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Process Biochem. 38, 1099-1104. https://doi.org/10.1016/S0032-9592(02)00242-X
- Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol. 91, 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
-
Khambhaty, Y., K. Mody, and B. Jha. 2007. Purification and characterization of
$\kappa$ -carrageenase from a novel γ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioprocess Eng. 12, 668-675. https://doi.org/10.1007/BF02931084 - Khuri, A. I. and J. A. Cornell. 1987. Response surfaces: Design and analysis. Marcel Dekker, New York, USA.
- Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
-
Kim, D. G., E. Y. Kim, J. K. Kim, H. S. Lee, and I. S. Kong. 2011. Application of
$\beta$ -1,3-glucanase from Pyrococcus furiosus for ethanol production using laminarian. J. Life Sci. 21, 68-73. https://doi.org/10.5352/JLS.2011.21.1.68 - Kim, H. J., W. Gao, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrpbacter aquimaris LBH-10. J. Life Sci. 20, 487-495. https://doi.org/10.5352/JLS.2010.20.4.487
- Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresource Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
- Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University, University Park, USA.
- Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillulus subsp. subtilis A-53. Enzym. Microb. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
- Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
- Maeadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
- Malinowska, E., W. Krzyczkowski, G. Lapienis, and F. Herold. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527. https://doi.org/10.1007/s10295-009-0640-x
- Mayende, L., B. S. Wilhelmi, and B. I. Pletschke. 2006. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38, 2963-2966. https://doi.org/10.1016/j.soilbio.2006.03.019
- Miller, G., L. Blum, R. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulaase activity. Anal. Biochem. 2, 127-132.
- Rajoka, M. I. and K. A. Malik. 1997. Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresource Technol. 59, 21-27. https://doi.org/10.1016/S0960-8524(96)00136-8
- Rasmussnen, R. S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nut. Res. 52, 237-292. https://doi.org/10.1016/S1043-4526(06)52005-4
- Ryu, D. D. Y. and M. Mandels. 1980. Cellulase: biosynthesis and applications. Enzym. Microb. Technol. 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
- Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
- Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
- Sen, R. 1997. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 68, 263-270. https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8
- Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
- Tao, S., L. Beihui, L. Zuohu, and L. Deming. 1999. Effects of air pressure amplitude on productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29. https://doi.org/10.1016/S0032-9592(98)00060-0
- Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee. 2009. Pretreatment and saccharifiction of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
- Weisburg, W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
- Yu, X. B., J. H. Nam, H. S. Yun, and Y. M. Koo. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47. https://doi.org/10.1007/BF02932483
Cited by
- Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3
- Enhanced production of carboxymethylcellulase by Cellulophaga lytica LBH-14 in pilot-scale bioreactor under optimized conditions involved in dissolved oxygen vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-012-0219-5
- Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
- Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran vol.40, pp.5, 2013, https://doi.org/10.1007/s11033-012-2435-9
- Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
- Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
- Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
- Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Escherichia coli JM109/A-53 with pH and temperature shifts vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0160-x
- Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6