DOI QR코드

DOI QR Code

Statistical Optimization for Production of Carboxymethylcellulase from Rice Hulls by a Newly Isolated Marine Microorganism Bacillus licheniformis LBH-52 Using Response Surface Method

통계학적인 방법과 왕겨를 기질로 사용하여 해양에서 분리한 Bacillus licheniformis LBH-52 를 사용한 carboxymethylcellualse의 생산조건 최적화

  • Kim, Hye-Jin (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Chung, Chung-Han (BK21 Bio-Silver Program of Dong-A University) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
  • 김혜진 (동아대학교 대학원 의생명과학과) ;
  • 고와 (동아대학교 대학원 의생명과학과) ;
  • 정정한 (동아대학교 BK21 생물자원 실버바이오 산업화 인력양성 사업단) ;
  • 이진우 (동아대학교 BK21 생물자원 실버바이오 산업화 인력양성 사업단)
  • Received : 2011.05.21
  • Accepted : 2011.07.05
  • Published : 2011.08.30

Abstract

A microorganism utilizing rice hulls as a substrate for the production of carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus lincheniformis by analyses of its 16S rDNA sequences. The optimal carbon and nitrogen sources for production of CMCase were found to be rice hulls and ammonium nitrate. The optimal conditions for cell growth and the production of CMCase by B. lincheniformis LBH-52 were investigated using the response surface method (RSM). The analysis of variance (ANOVA) of results from central composite design (CCD) indicated that a highly significant factor ("probe>F" less than 0.0001) for cell growth was rice hulls, whereas those for production of CMCase were rice hulls and initial pH of the medium. The optimal conditions of rice hulls, ammonium nitrate, initial pH, and temperature for cell growth extracted by Design Expert Software were 48.7 g/l, 1.8 g/l, 6.6, and 35.7$^{\circ}C$, respectively, whereas those for the production of CMCase were 43.2 g/l, 1.1 g/l, 6.8, and 35.7$^{\circ}C$. The maximal production of CMCase by B. lincheniformis LBH-52 from rice hulls under optimized conditions was 79.6 U/ml in a 7 l bioreactor. In this study, rice hulls and ammonium nitrate were developed to be substrates for the production of CMCase by a newly isolated marine microorganism, and the time for production of CMCase was reduced to 3 days using a bacterial strain with submerged fermentation.

왕겨를 기질로 사용하여 carboxymethylcellualse (CMCase)를 생산하는 미생물을 해수에서 분리하였으며 16S rDNA의 염기서열을 분석하여 동정한 결과, Bacillus lichemiformis로 확인되었다. CMCase를 생산하기 위한 최적의 탄소원과 질소원은 왕겨와 암모니움 나이트레이트이었다. 통계학적인 방법인 response surface method (RSM)을 사용하여 CMCase를 생산하기 위한 조건을 최적화하였다. 통계학적인 분석 결과, 왕겨가 균체의 생육에 미치는 영향이 가장 높았으며, 왕겨와 배지의 초기 pH가 CMCase 생산에 미치는 영향이 높았다. Design Expert Software를 사용하여 결과를 분석한 결과, 균체의 생장에 최적인 조건은 48.7 g/l 왕겨, 1.8 g/l 암모니움 나이트레이트, 배지의 초기 pH 6.8 및 배양온도 35.7$^{\circ}C$이었으나, CMCase의 생산에 최적인 조건은 43.2 g/l 왕겨, 1.1 g/l 암모니움 나이트레이트, 배지의 초기 pH 6.8 및 배양온도 35.7$^{\circ}C$이었다. 최적화된 조건에서 왕겨를 기질로 사용하여 B. lincheniformis LBH-52가 생산하는 CMCase는 79.6 U/ml이었다. 본 연구를 통하여 왕겨와 암모니움 나이트레이트를 CMCase를 생산하는 기질로 개발하였으며, 해수에서 분리한 미생물을 사용하여 생산기간을 3일로 단축하였다.

Keywords

References

  1. Alam, M. Z., S. A. Muyibi, and R. Wahid. 2008. Statistical optimization of process conditions for cellulose production by liquid state bioconversion of domestic wastewater sludge. Bioresource Technol. 99, 4709-4716. https://doi.org/10.1016/j.biortech.2007.09.072
  2. Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzym. Microb. Technol. 21, 12-17. https://doi.org/10.1016/S0141-0229(96)00207-4
  3. Ballesteros, M., J. M. Oliva, M. J. Negro, P. Manzannares, and I. Ballesteros. 2004. Ethanol from lignocellulosic materials by a simultaneous saccharfication and fermentation process (SSF) with Kluyveromeces marxianus CECT 10875. Process Biochem. 39, 1843-1848. https://doi.org/10.1016/j.procbio.2003.09.011
  4. Blumer-Schuette, S. E., I. Kataeva, J. Westpheling, M. W. W. Adams, and R. M. Kelly. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  5. Chakraborty, K. and R. P. Raj. 2008. An extra-cellular alkaline metallolipase from Bacills licheniformis MTCC 6824: purification and biochemical characterization. Food Chem. 109, 727-736. https://doi.org/10.1016/j.foodchem.2008.01.026
  6. Chen, H. and S. Jin. 2006. Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose. Enzym. Microb. Technol. 39, 1430-1432. https://doi.org/10.1016/j.enzmictec.2006.03.027
  7. Chun, J. 1995. Computer-assisted classification and identification of actinomycestes. Ph. D. Thesis, University of Newcastle, Newcastle upon Tyne, UK.
  8. Emtiazi, G. and I. Nahvi. 2000 Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
  9. Gavaco-Paulo, A. 1998. Mechanism of cellulase action in textile processes. Carbohydr. Polym. 37, 273-277. https://doi.org/10.1016/S0144-8617(98)00070-8
  10. Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnol. 3, 722-726. https://doi.org/10.1038/nbt0885-722
  11. Hmidet, N., A. Bayoudh, J. G. Berrin, S. Kanoun, N. Jude, and M. Nasri. 2008. Purification and biochemical characterization of a novel $\alpha$-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Esherichia coli. Process Biochem. 43, 499-510. https://doi.org/10.1016/j.procbio.2008.01.017
  12. Jecu, L. 2000. Solid state fermentation of agricultural wastes for endogulcanse production. Ind. Crops Prod. 11, 1-5. https://doi.org/10.1016/S0926-6690(99)00022-9
  13. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Jung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
  14. Kalogeris, E., P. Christakopoulos, P. Katapodis, A. Alexious, S. Vlachou, D. Kekos, and B. J. Macris. 2003. Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Process Biochem. 38, 1099-1104. https://doi.org/10.1016/S0032-9592(02)00242-X
  15. Kang, S. W., Y. S. Park, J. S. Lee, S. I. Hong, and S. W. Kim. 2004. Production of cellulase and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technol. 91, 153-156. https://doi.org/10.1016/S0960-8524(03)00172-X
  16. Khambhaty, Y., K. Mody, and B. Jha. 2007. Purification and characterization of $\kappa$-carrageenase from a novel γ -proteobacterium, Pseudomonas elongate (MTCC 5261) syn. Microbulbifer elongates comb. Nov. Biotechnol. Bioprocess Eng. 12, 668-675. https://doi.org/10.1007/BF02931084
  17. Khuri, A. I. and J. A. Cornell. 1987. Response surfaces: Design and analysis. Marcel Dekker, New York, USA.
  18. Kim, B. K., B. H. Lee, Y. J. Lee, I. H. Jin, C. H. Chung, and J. W. Lee. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzym Microb. Technol. 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  19. Kim, D. G., E. Y. Kim, J. K. Kim, H. S. Lee, and I. S. Kong. 2011. Application of $\beta$-1,3-glucanase from Pyrococcus furiosus for ethanol production using laminarian. J. Life Sci. 21, 68-73. https://doi.org/10.5352/JLS.2011.21.1.68
  20. Kim, H. J., W. Gao, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Characterization of acidic carboxymethylcellulase produced by a marine microorganism, Psychrpbacter aquimaris LBH-10. J. Life Sci. 20, 487-495. https://doi.org/10.5352/JLS.2010.20.4.487
  21. Krishna, C. 1999. Production of bacterial cellulases by a solid state bioprocessing of banana wastes. Bioresource Technol. 69, 231-239. https://doi.org/10.1016/S0960-8524(98)00193-X
  22. Kumar, S., K. Tamura, and N. Nei. 1993. MEGA: Molecular evolutionary genetic analysis. Version 1.01. The Pennsylvania State University, University Park, USA.
  23. Lee, B. H., B. K. Kim, Y. J. Lee, C. H. Chung, and J. W. Lee. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillulus subsp. subtilis A-53. Enzym. Microb. Technol. 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  24. Lee, S. M. and Y. M. Koo. 2001. Pilot-scale production of cellulose using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11, 229-233.
  25. Maeadza, C., R. Hatti-Kaul, R. Zvauya, and B. Mattiasson. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83, 177-187. https://doi.org/10.1016/S0168-1656(00)00305-9
  26. Malinowska, E., W. Krzyczkowski, G. Lapienis, and F. Herold. 2009. Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: optimization using a central composite rotatable design (CCRD). J. Ind. Microbiol. Biotechnol. 36, 1513-1527. https://doi.org/10.1007/s10295-009-0640-x
  27. Mayende, L., B. S. Wilhelmi, and B. I. Pletschke. 2006. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus sp. isolated from compost. Soil Biol. Biochem. 38, 2963-2966. https://doi.org/10.1016/j.soilbio.2006.03.019
  28. Miller, G., L. Blum, R. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulaase activity. Anal. Biochem. 2, 127-132.
  29. Rajoka, M. I. and K. A. Malik. 1997. Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresource Technol. 59, 21-27. https://doi.org/10.1016/S0960-8524(96)00136-8
  30. Rasmussnen, R. S. and M. T. Morrissey. 2007. Marine biotechnology for production of food ingredients. Adv. Food Nut. Res. 52, 237-292. https://doi.org/10.1016/S1043-4526(06)52005-4
  31. Ryu, D. D. Y. and M. Mandels. 1980. Cellulase: biosynthesis and applications. Enzym. Microb. Technol. 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
  32. Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
  33. Saha, B. C., L. B. Iten, M. A. Cotta, and Y. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of RHs to fuel ethanol. Biotechnol. 21, 816-822.
  34. Sen, R. 1997. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 68, 263-270. https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8
  35. Sukumaran, R. K., R. R. Singhania, G. M. Mathew, and A. Pandey. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew. Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008
  36. Tao, S., L. Beihui, L. Zuohu, and L. Deming. 1999. Effects of air pressure amplitude on productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochem. 34, 25-29. https://doi.org/10.1016/S0032-9592(98)00060-0
  37. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  38. Wei, G. Y., W. Gao, I. H. Jin, S. Y. Yoo, J. H. Lee, C. H. Chung, and J. W. Lee. 2009. Pretreatment and saccharifiction of rice hulls for the production of fermentable sugars. Biotechnol. Bioprocess Eng. 14, 828-834. https://doi.org/10.1007/s12257-009-0029-8
  39. Weisburg, W. G., S. M. Barns, D. A. Pelletire, and D. J. Lane. 1991. 16S ribosomal DNA amplication for phylogenetic study. J. Bacteriol. 173, 697-703.
  40. Yu, X. B., J. H. Nam, H. S. Yun, and Y. M. Koo. 1998. Optimization of cellulose production in batch fermentation by Trichoderma reesei. Biotechnol. Bioprocess Eng. 3, 44-47. https://doi.org/10.1007/BF02932483

Cited by

  1. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3
  2. Enhanced production of carboxymethylcellulase by Cellulophaga lytica LBH-14 in pilot-scale bioreactor under optimized conditions involved in dissolved oxygen vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-012-0219-5
  3. Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
  4. Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran vol.40, pp.5, 2013, https://doi.org/10.1007/s11033-012-2435-9
  5. Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.542
  6. Rapid Statistical Optimization of Cultural Conditions for Mass Production of Carboxymethylcellulase by a Newly Isolated Marine Bacterium, Bacillus velezensis A-68 from Rice Hulls vol.23, pp.6, 2013, https://doi.org/10.5352/JLS.2013.23.6.757
  7. Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
  8. Enhanced production of carboxymethylcellulase of Bacillus subtilis subsp. subtilis A-53 by a recombinant Escherichia coli JM109/A-53 with pH and temperature shifts vol.32, pp.1, 2015, https://doi.org/10.1007/s11814-014-0160-x
  9. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6