Three Dimensional Finite Element Analysis on Stress Distribution According to the Bucco-lingual Inclination of the Implant Fixture and Abutment in the Mandibular Posterior Region

하악 구치부에서 임플란트 고정체와 지대주의 협설 기울기에 따른 응력분포에 관한 삼차원 유한요소 분석

  • Lee, Hyun-Sook (Dept. of Implantology, Graduate School of Clinical dentistry Ewha Womans University) ;
  • Kim, Ji-Youn (Dept. of Dentistry, Mok-dong Hospital School of Medicine, Ewha Womans University) ;
  • Kim, Ye-Mi (Dept. of Dentistry, Mok-dong Hospital School of Medicine, Ewha Womans University) ;
  • Kim, Myung-Rae (Dept. of Implantology, Graduate School of Clinical dentistry Ewha Womans University) ;
  • Kim, Sun-Jong (Dept. of Implantology, Graduate School of Clinical dentistry Ewha Womans University)
  • 이현숙 (이화여자대학교 임상치의학대학원 임플란트치의학전공) ;
  • 김지연 (이화여자대학교 의학전문대학원 치과학교실) ;
  • 김예미 (이화여자대학교 의학전문대학원 치과학교실) ;
  • 김명래 (이화여자대학교 임상치의학대학원 임플란트치의학전공) ;
  • 김선종 (이화여자대학교 임상치의학대학원 임플란트치의학전공)
  • Received : 2011.09.18
  • Accepted : 2011.12.25
  • Published : 2011.12.31

Abstract

The purpose of this study was to comparatively analyze the stress distribution according to the inclinations of abutments and angulations of the implant fixtures under occlusal loading force. Three study models with straight and $15^{\circ}$ and $25^{\circ}$-angled abutments were prepared following the insertion of Implants parallel to the long axis of the tooth. Additional two experimental models were fabricated with $15^{\circ}$ and $25^{\circ}$ fixture inclinations. Using ANSYS 11, a finite element analysis program, the magnitudes of stress distribution were analyzed. The magnitude of stress under loading was lowest when the load was applied vertically onto the axis of implant. And the magnitude of stress under compound(vertical+oblique) loading was increased as the inclination of implant abutment and fixture was increase. But, the distribution of stress was different as the loading conditions, because of the horizontal offset. As the offset between the axis of loading and the central axis of the implant increased, the stress was increased.

본 연구는 임플란트의 지대주와 고정체의 식립 기울기 변화에 따른 교합력의 응력 분산을 비교 분석하고자 하였다. 치아 장축에 평행하게 식립한 임플란트 위에 직선적 지대주를 체결한 것을 기준 모델로 하여, $15^{\circ}$, $25^{\circ}$ 설측 경사진 지대주를 체결한 모델 2종류, 고정체를 $15^{\circ}$, $25^{\circ}$ 설측 경사 식립 후 동일 각도의 협측 경사의 지대주를 체결한 모델 2종류, 총 5개의 연구 모델에 각각 수직하중과 경사하중을 부가하여 나타난 응력분포를 3차원 유한요소법(finite element analysis)를 이용하여 분석하였다. 연구 결과, 지대주와 고정체의 식립 기울기가 증가할수록 복합하중에서 임플란트와 주위조직의 응력은 증가하였다. 다만 하중의 위치와 종류에 따라 응력의 변화가 모델에 따라 부분적으로 다르게 나타나기도 했다. 이는 응력이 하중의 작용선과 임플란트 고정체의 중심선과의 거리인 수평적 편심부하(horizontal offset)가 변화한 결과이며, 편심부하가 증가할수록 응력도 증가하는 결과를 보였다.

Keywords

References

  1. Weinberg LA, Kruger B. Biomechanical considerations when combining tooth-supported and implant-supported prostheses. Oral Surg Oral Med Oral Pathol 1994;78:22-27. https://doi.org/10.1016/0030-4220(94)90112-0
  2. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410. https://doi.org/10.1016/S0022-3913(83)80101-2
  3. David CH, William RG, Vijay KG. Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element - A finite element strss analysis. Int J Oral Maxillofac Implants 1992;7:450-458.
  4. Davis DM, Zarb GA, Chao YL. Studies on frameworks for osseointegrated prostheses. Part1. The effect of varying the number of supporting abutments. Int J Oral Maxillofac Implants 1988;3: 197-201.
  5. Ferrario V, Sforza C. Biomechanical module of the human mandible - A hypothesis involving stabilizing activity of the superior belly of lateral pterygoid muscle. J Prosthet Dent 1992;68:829-835. https://doi.org/10.1016/0022-3913(92)90212-S
  6. Haldun I, Kivanc A. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent 2002;30:41-46. https://doi.org/10.1016/S0300-5712(01)00057-4
  7. Bergman B. Evaluation of results of treatment with osseointegrated implants by the Swedish National Board of Health and welfare. J Prosthet Dent 1983;50:114-120. https://doi.org/10.1016/0022-3913(83)90176-2
  8. Borchers I, Reidhart P. Three Dimensional stress distribution around dental implants at different stages of interface development. J Dent Res 1994;62:155- 159.
  9. Bidez MW, Misch CE. Issues in bone mechanics related to oral implants. Implant Dent 1:289-294, 1992. https://doi.org/10.1097/00008505-199200140-00011
  10. Cowin SC. Bone mechanics. Boca Raton, Fla, CRC Press, 1989.
  11. Misch CE, Bidez Mw. Implant-protected occlusion: a biomechanical rationale. Compend Cont Educ Dent 15:1330-1343, 1994.
  12. Cibirka RM, Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 1992;361-364.
  13. O'Brien WJ. Dental materials & their selection. Chicago: Quintessence; 1997:259-272.
  14. Boyer R, Collings EW, Collings, Welschet G. Materials Properties Handbook: Titanium Alloys. Rotherham: ASM International; 1994:12-22.
  15. Holt JM, Mindlin H, Ho CY. Structural Alloys Handbook, West Lafayette: CINDAS/ Purdue University; 1996.
  16. Moyen BJ, Lahey PJ, Weinberg EH, Rumelhart C, Harris WH. Effect of application of metal plates to bone. Comparison of a rigid with a flexible plate. Acta Orthop Belg 1980;46:806-815.
  17. Hassler CR, Rybicki EF, Simonen FA, Weis EB. Measurements of healing at an osteotome in a rabbit calvarium: the influence of applied compressive stress on collagen synthesis and calcification. J Biomechanics 1974;7:545-50. https://doi.org/10.1016/0021-9290(74)90088-8
  18. Soltesz U, Siegele D. Principal characteristics of the stress distribution in the jaw caused by dental implants. In: Huiskes R, van Campen DH, de Wijn JR (eds). Biomechanics: principles and applications. The Hague: Martinus Nijhoff; 1982:439-444.
  19. Binderman I. NIH grant study on two-dimensional FEA study of 54 implant body designs, 1973 (personal communication).
  20. Lavernia CJ, Cook SD, Weinstein AM, Klawitter JJ. Analysis of stresses in a dental implant system. J Biomech 1981;14:555-560. https://doi.org/10.1016/0021-9290(81)90005-1
  21. Richter EJ, Orschall B, Jovanovic SA. Dental implant abutment resembling the two-phase tooth mobility. J Biotech 1990;23:297-306.
  22. Cook RD, Malkus DS, Plesha ME. Concepts and applications of finite element analysis. 4th ed. New York: JohnWiley & Sons; 2001:542-573.
  23. Haraldson T, Carlsson GE. Biteforce and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1977;85:200-208.
  24. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989;4:333-340.
  25. Sertgoz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implant supported fixed prosthesis. Int J Prosthodont 1997;10:19-27.
  26. Issidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implant Res 1996;7: 143-152. https://doi.org/10.1034/j.1600-0501.1996.070208.x
  27. Reiger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J prosphet Dent 1990;63:457-465. https://doi.org/10.1016/0022-3913(90)90238-8
  28. Holmgren EP, Seckinger RJ, Kilgren LM. Evaluating parameter of osseointegrated dental implant using finite element analysis a two-dimensional comparative study examining the effect of implant diameter, implant shape and load direction. J Oral Implantol 1998;14:80-88.
  29. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three dimensional finite element stress analysis in and arround the screw-vent implant. Int J Oral Maxillofac Implants 1991;6:391-398.
  30. Ko CC, Kohn DH, Hollister SJ. Micromechanics of implant/tissueinterfaces, J Oral Implantol 1992;18: 220-230.