DOI QR코드

DOI QR Code

Ribosomal protein S3 is phosphorylated by Cdk1/cdc2 during G2/M phase

  • Yoon, In-Soo (Department of Advanced Technology Fusion, Konkuk University) ;
  • Chung, Ji-Hyung (Yonsei Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University Health System) ;
  • Hahm, Soo-Hyun (Department of Advanced Technology Fusion, Konkuk University) ;
  • Park, Min-Ju (Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee, You-Ri (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ko, Sung-Il (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kang, Lin-Woo (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, Tae-Sung (Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University) ;
  • Kim, Joon (Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University) ;
  • Han, Ye-Sun (Department of Advanced Technology Fusion, Konkuk University)
  • Received : 2010.11.12
  • Accepted : 2011.06.13
  • Published : 2011.08.31

Abstract

Ribosomal protein S3 (rpS3) is a multifunctional protein involved in translation, DNA repair, and apoptosis. The relationship between rpS3 and cyclin-dependent kinases (Cdks) involved in cell cycle regulation is not yet known. Here, we show that rpS3 is phosphorylated by Cdk1 in G2/M phase. Co-immunoprecipitation and GST pull-down assays revealed that Cdk1 interacted with rpS3. An in vitro kinase assay showed that Cdk1 phosphorylated rpS3 protein. Phosphorylation of rpS3 increased in nocodazole-arrested mitotic cells; however, treatment with Cdk1 inhibitor or Cdk1 siRNA significantly attenuated this phosphorylation event. The phosphorylation of a mutant form of rpS3, T221A, was significantly reduced compared with wild-type rpS3. Decreased phosphorylation and nuclear accumulation of T221A was much more pronounced in G2/M phase. These results suggest that the phosphorylation of rpS3 by Cdk1 occurs at Thr221 during G2/M phase and, moreover, that this event is important for nuclear accumulation of rpS3.

Keywords

References

  1. Henras, A. K., Soudet, J., Gerus, M., Lebaron, S., Caizergues-Ferrer, M., Mougin, A. and Henry, Y. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65, 2334-2359. https://doi.org/10.1007/s00018-008-8027-0
  2. Yadavilli, S., Hegde, V. and Deutsch, W. A. (2007) Translocation of human ribosomal protein S3 to sites of DNA damage is dependent on ERK-mediated phosphorylation following genotoxic stress. DNA Repair 6, 1453-1462. https://doi.org/10.1016/j.dnarep.2007.04.009
  3. Kim, T. S., Kim, H. D. and Kim, J. (2009) PKCdelta-dependent functional switch of rpS3 between translation and DNA repair. Biochim. Biophys. Acta. 1793, 395-405. https://doi.org/10.1016/j.bbamcr.2008.10.017
  4. Lee, S. B., Kwon, I. S., Park, J., Lee, K. H., Ahn, Y., Lee, C., Kim, J., Choi, S. Y., Cho, S. W. and Ahn, J. Y. (2010) Ribosomal protein S3, a new substrate of Akt, serves as a signal mediator between neuronal apoptosis and DNA repair. J. Biol. Chem. 285, 29457-29468. https://doi.org/10.1074/jbc.M110.131367
  5. Wan, F., Anderson, D. E., Barnitz, R. A., Snow, A., Bidere, N., Zheng, L., Hegde, V., Lam, L. T., Staudt, L. M., Levens, D., Deutsch, W. A. and Lenardo, M. J. (2007) Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell 131, 927-939. https://doi.org/10.1016/j.cell.2007.10.009
  6. Kim, H. D., Lee, J. Y. and Kim, J. (2005) Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem. Biophys. Res. Commun. 333, 110-115. https://doi.org/10.1016/j.bbrc.2005.05.079
  7. Kim, T. S., Kim, H. D., Shin, H. S. and Kim, J. (2009) Phosphorylation status of nuclear ribosomal protein S3 is reciprocally regulated by protein kinase Cδ and protein phosphatase 2A. J. Biol. Chem. 284, 21201-21208. https://doi.org/10.1074/jbc.M109.018168
  8. Jang, C. Y., Lee, J. Y. and Kim, J. (2004) RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett. 560, 81-85. https://doi.org/10.1016/S0014-5793(04)00074-2
  9. Malumbres, M. and Barbacid, M. (2005) Mammalian cyclin- dependent kinases. Trends Biochem. Sci. 30, 630-641. https://doi.org/10.1016/j.tibs.2005.09.005
  10. Salaun, P., Rannou, Y. and Prigent, C. (2008) Cdk1, Plks, Auroras, and Neks: the mitotic bodyguards. Adv. Exp. Med. Biol. 617, 41-56. https://doi.org/10.1007/978-0-387-69080-3_4
  11. Holt, L. J., Tuch, B. B., Villen, J., Johnson, A. D., Gygi, S. P. and Morgan, D. O. (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682-1686. https://doi.org/10.1126/science.1172867
  12. Bembenek, J. and Yu, H. (2003) Regulation of CDC14: pathways and checkpoints of mitotic exit. Front. Biosci. 8, d1275-d1287. https://doi.org/10.2741/1128
  13. Macaluso, M., Montanari, M., Cinti, C. and Giordano, A. (2005) Modulation of cell cycle components by epigenetic and genetic events. Semin. Oncol. 32, 452-457. https://doi.org/10.1053/j.seminoncol.2005.07.009
  14. Bhat, K. P., Itahana, K., Jin, A. and Zhang, Y. (2004) Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 23, 2402-2412 https://doi.org/10.1038/sj.emboj.7600247
  15. Dai, M. S. and Lu, H. (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J. Biol. Chem. 279, 44475-44482. https://doi.org/10.1074/jbc.M403722200
  16. Zhang, Y., Wolf, G. W., Bhat, K., Jin, A., Allio, T., Burkhart, W. A. and Xiong, Y. (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell Biol. 23, 8902-8912. https://doi.org/10.1128/MCB.23.23.8902-8912.2003
  17. Gou, Y., Shi, Y., Zhang, Y., Nie, Y., Wang, J., Song, J., Jin, H., He, L., Gao, L., Qiao, L., Wu, K. and Fan, D. (2010) Ribosomal protein L6 promotes growth and cell cycle progression through upregulating cyclin E in gastric cancer cells. Biochem. Biophys. Res. Commun. 393, 788-793. https://doi.org/10.1016/j.bbrc.2010.02.083
  18. Chen, Y. C., Chang, M. Y., Shiau, A. L., Yo, Y. T. and Wu, C. L. (2007) Mitochondrial ribosomal protein S36 delays cell cycle progression in association with p53 modification and p21(WAF1/CIP1) expression. J. Cell. Biochem. 100, 981-990. https://doi.org/10.1002/jcb.21079
  19. Ventimiglia, F. A. and Wool, I. G. (1974) A kinase that transfers the gamma-phosphoryl group of GTP to proteins of eukaryotic 40S ribosomal subunits. Proc. Natl. Acad. Sci. U. S. A. 71, 350-354. https://doi.org/10.1073/pnas.71.2.350
  20. Francis, T. A. and Roberts, S. (1982) Influence of the state of ribosome association on the phosphorylation of ribosomal proteins in isolated ribosome-protein kinase systems from rat cerebral cortex. Biochem. J. 208, 289-300. https://doi.org/10.1042/bj2080289
  21. Naranda, T. and Ballesta, J. P. (1991) Phosphorylation controls binding of acidic proteins to the ribosome. Proc. Natl. Acad. Sci. U. S. A. 88, 10563-10567. https://doi.org/10.1073/pnas.88.23.10563
  22. Moreno, S. and Nurse, P. (1990) Substrates for p34cdc2: in vivo veritas? Cell 61, 549-551. https://doi.org/10.1016/0092-8674(90)90463-O

Cited by

  1. A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins vol.37, pp.3, 2014, https://doi.org/10.14348/molcells.2014.0001
  2. Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer vol.46, pp.9, 2013, https://doi.org/10.5483/BMBRep.2013.46.9.180
  3. Gene expression of ribosomal protein mRNA in Chironomus riparius: Effects of endocrine disruptor chemicals and antibiotics vol.156, pp.2, 2012, https://doi.org/10.1016/j.cbpc.2012.05.002
  4. Heterogeneous Nuclear Ribonucleoprotein A2/B1 Regulates the Self-Renewal and Pluripotency of Human Embryonic Stem Cells Via the Control of the G1/S Transition vol.31, pp.12, 2013, https://doi.org/10.1002/stem.1366
  5. Brahma-related gene 1-associated expression of 9-27 and IFI-27 is involved in acquired cisplatin resistance of gastric cancer cells vol.8, pp.3, 2013, https://doi.org/10.3892/mmr.2013.1576
  6. The Role of CHMP4C on Proliferation in the Human Lung Cancer A549 Cells vol.06, pp.15, 2015, https://doi.org/10.4236/jct.2015.615133
  7. PP2A function toward mitotic kinases and substrates during the cell cycle vol.46, pp.6, 2013, https://doi.org/10.5483/BMBRep.2013.46.6.041
  8. Eukaryotic ribosomal protein S3: A constituent of translational machinery and an extraribosomal player in various cellular processes vol.99, 2014, https://doi.org/10.1016/j.biochi.2013.11.001
  9. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity vol.59, pp.7, 2016, https://doi.org/10.1007/s11427-016-0018-0
  10. An emerging role for the ribosome as a nexus for post-translational modifications vol.45, 2017, https://doi.org/10.1016/j.ceb.2017.02.010
  11. New role of human ribosomal protein S3: Regulation of cell cycle via phosphorylation by cyclin-dependent kinase 2 vol.13, pp.5, 2017, https://doi.org/10.3892/ol.2017.5906
  12. Translating the Game: Ribosomes as Active Players vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00533