DOI QR코드

DOI QR Code

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School) ;
  • Kim, Hyung-Hwan (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School)
  • Received : 2011.07.21
  • Published : 2011.08.31

Abstract

Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Keywords

References

  1. Sarbassov, D. D., Guertin, D. A., Ali, S. M. and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. https://doi.org/10.1126/science.1106148
  2. Wang, C. Y., Kim, H. H., Hiroi, Y., Sawada, N., Salomone, S., Benjamin, L. E., Walsh, K., Moskowitz, M. A. and Liao, J. K. (2009) Obesity increases vascular senescence and susceptibility to ischemic injury through chronic activation of Akt and mTOR. Sci. Signal. 2, ra11. https://doi.org/10.1126/scisignal.2000143
  3. Peterson, T. R., Laplante, M., Thoreen, C. C., Sancak, Y., Kang, S. A., Kuehl, W. M., Gray, N. S. and Sabatini, D. M. (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886. https://doi.org/10.1016/j.cell.2009.03.046
  4. Guertin, D. A. and Sabatini, D. M. (2007) Defining the Role of mTOR in Cancer. Cancer Cell 12, 9-22. https://doi.org/10.1016/j.ccr.2007.05.008
  5. Bhaskar, P. T. and Hay, N. (2007) The two TORCs and Akt. Dev. Cell. 12, 487-502. https://doi.org/10.1016/j.devcel.2007.03.020
  6. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468. https://doi.org/10.1016/S1097-2765(02)00636-6
  7. Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J. and Sabatini, D. M. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859-871. https://doi.org/10.1016/j.devcel.2006.10.007
  8. Tokunaga, C., Yoshino, K. and Yonezawa, K. (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 313, 443-446. https://doi.org/10.1016/j.bbrc.2003.07.019
  9. Ma, X. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318. https://doi.org/10.1038/nrm2672
  10. Huang, J. and Manning, B. D. (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190. https://doi.org/10.1042/BJ20080281
  11. Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  12. Zhang, H., Bajraszewski, N., Wu, E., Wang, H., Moseman, A. P., Dabora, S. L., Griffin, J. D. and Kwiatkowski, D. J. (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Invest. 117, 730-738. https://doi.org/10.1172/JCI28984
  13. Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657. https://doi.org/10.1038/ncb839
  14. Kovacina, K. S., Park, G. Y., Bae, S. S., Guzzetta, A. W., Schaefer, E., Birnbaum, M. J. and Roth, R. A. (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189-10194. https://doi.org/10.1074/jbc.M210837200
  15. Huang, B. and Porter, G. (2005) Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta. Pharmacol. Sin. 26, 1253-1258. https://doi.org/10.1111/j.1745-7254.2005.00184.x
  16. Vander, H. E., Lee, S. I., Bandhakavi, S., Griffin, T. J. and Kim, D. H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316-323. https://doi.org/10.1038/ncb1547
  17. Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A. and Sabatini, D. M. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915. https://doi.org/10.1016/j.molcel.2007.03.003
  18. Hanada, M., Feng, J. and Hemmings, B. A. (2004) Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta. 1697, 3-16. https://doi.org/10.1016/j.bbapap.2003.11.009
  19. Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S. Y., Huang, Q., Qin, J. and Su, B. (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137. https://doi.org/10.1016/j.cell.2006.08.033
  20. Huang, J., Dibble, C. C., Matsuzaki, M. and Manning, B. D. (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell Biol. 28, 4104-4115. https://doi.org/10.1128/MCB.00289-08
  21. Huang, J., Wu, S., Wu, C. L. and Manning, B. D. (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 69, 6107-6114.
  22. Wullschleger, S., Loewith, R. and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484. https://doi.org/10.1016/j.cell.2006.01.016
  23. Shen, W. H., Chen, Z., Shi, S., Chen, H., Zhu, W., Penner A., Bu, G., Li, W., Boyle, D. W., Rubart, M., Field, L. J., Abraham, R., Liechty, E. A. and Shou, W. (2008) Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J. Biol. Chem. 283, 13842-13849. https://doi.org/10.1074/jbc.M801510200
  24. Tong, H., Chen, W., Steenbergen, C. and Murphy, E. (2000) Ischemic preconditioning activates phosphatidylinositol- 3-kinase upstream of protein kinase C. Circ. Res. 87, 309-315. https://doi.org/10.1161/01.RES.87.4.309
  25. Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W. and Kukreja, R. C. (2006) Rapamycin confers preconditioning- like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell Cardiol. 41, 256-264. https://doi.org/10.1016/j.yjmcc.2006.04.014
  26. Murphy, E. and Steenbergen, C. (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581-609. https://doi.org/10.1152/physrev.00024.2007
  27. Balasubramanian, S., Johnston, R. K., Moschella, P. C., Mani, S. K., Tuxworth, W. J., Jr. and Kuppuswamy, D. (2009) mTOR in growth and protection of hypertrophying myocardium. Cardiovasc. Hematol. Agents Med. Chem. 7, 52-63. https://doi.org/10.2174/187152509787047603
  28. Jonassen, A. K., Sack, M. N., Mjos, O. D. and Yellon, D. M. (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cellsurvival signaling. Circ. Res. 89, 1191-1198. https://doi.org/10.1161/hh2401.101385
  29. Oudit, G. Y. and Penninger, J. M. (2009) Cardiac Regulation by Phosphoinositide 3-kinases and PTEN. Cardiovasc. Res. 250-260.
  30. Lyons, W. E., George, E. B., Dawson, T. M., Steiner, J. P. and Snyder, S. H. (1994) Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory gangli. Proc. Natl. Acad. Sci. U.S.A. 91, 3191-3195. https://doi.org/10.1073/pnas.91.8.3191
  31. Steiner, J. P., Connolly, M. A., Valentine, H. L., Hamilton, G. S., Dawson, T. M., Hester, L. and Snyder, S. H. (1997) Neurotropic actions of nonimmuosuppressive analogues of immunosuppressive drugs FK506, rapamycin, and cyclosporine A. Nat. Med. 3, 421-428. https://doi.org/10.1038/nm0497-421
  32. Erlich, S., Alexandrovich, A., Shohami, E. and Pinkas K. R. (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26, 86-93. https://doi.org/10.1016/j.nbd.2006.12.003
  33. Ruan, B., Pong, K., Jow, F., Bowlby, M., Crozier, R. A., Liu, D., Liang, S., Chen, Y., Mercado, M. L., Feng, X., Bennett, F., von, S. D., McDonald, L., Zeleska, M. M., Wood, A., Reinhart, P. H., Magolda, R. L., Skotnicki, J., Pangalos, M. N., Koehn, F. E. Carter, G. T., Abou, G. M. and Graziani, E. l. (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc. Natl. Acad. Sci. U.S.A. 105, 33-38. https://doi.org/10.1073/pnas.0710424105
  34. Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M. and Balduini, W. (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy. 6, 366-377. https://doi.org/10.4161/auto.6.3.11261
  35. Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., Bauer, E. P., Klovekorn, W. P. and Schaper, J. (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984-991. https://doi.org/10.1161/01.CIR.0000051865.66123.B7
  36. Lekli, I., Ray, D., Mukherjee, S., Gurusamy, N., Ahsan, M. K., Juhasz, B., Bak, I., Tosaki, A., Gherghiceanu, M., Popescu, L. M. and Das, D. K. (2010) Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J. Cell Mol. Med. 14, 2506-2518. https://doi.org/10.1111/j.1582-4934.2009.00921.x
  37. Ma, H., Guo, R., Yu, L., Zhang, Y. and Ren, J. (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32, 1025-1038. https://doi.org/10.1093/eurheartj/ehq253
  38. Zhang, Z., Yu, B. and Tao, G. Z. (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin. Med. J. (Engl). 122, 2360-2365.
  39. Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M. K., Gherghiceanu, M., Popescu, L. M., Das, D. K. (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103-112. https://doi.org/10.1093/cvr/cvp384
  40. Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon, C. C. and Pandolfi, P. P. (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523-527. https://doi.org/10.1038/nature04809
  41. Ayuso, M. I., Hernandez, J. M., Martin, M. E., Salinas, M. and Alcazar, A. (2010) New hierarchical phosphorylation pathway of the translational repressor elF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J. Biol. Chem. 285, 34355-34363. https://doi.org/10.1074/jbc.M110.135103
  42. Koh, P. O. (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci. Lett. 444, 74-78. https://doi.org/10.1016/j.neulet.2008.08.024
  43. Koh, P. O. (2010) Gingko biloba extract (EGb 761) prevents cerebral ischemia-induced p70S6 kinase and S6 phosphorylation. Am. J. Chin. Med. 38, 727-734. https://doi.org/10.1142/S0192415X10008196
  44. Shi, G. D., OuYang, Y. P., Shi, J. G., Liu, Y., Yuan, W. and Jia, L. S. (2011) PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun. 404, 941-945. https://doi.org/10.1016/j.bbrc.2010.12.085
  45. Huang, C. Y., Hsiao, J. K., Lu, Y. Z., Lee, T. C. and Yu, L. C. (2011) Anti-apoptotic PI3K/Akt signaling by sodium/ glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab Invest. 91, 294-309. https://doi.org/10.1038/labinvest.2010.177
  46. Zhang, Y. and Ren, J. (2010) Autophagy in ALDH2- elicited cardioprotection against ischemic heart disease: slayer or savior? Autophagy. 6, 1212-1213. https://doi.org/10.4161/auto.6.8.13652
  47. Zhang, L., Yang, Y., Wang, Y. and Gao, X. (2011) Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 66, 144-150.
  48. Vigneron, F., Dos, S. P., Lemoine, S., Bonnet, M., Tariosse, L., Couffinhal, T., Duplaa, C. and Jaspard, -V. B. (2011) GSK-3$\beta$at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res. 90, 49-56. https://doi.org/10.1093/cvr/cvr002
  49. Chong, Z. Z., Shang, Y. C., Zhang, L., Wang, S. and Maiese, K. (2010) Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxid. Med. Cell. Longev. 3, 374-391. https://doi.org/10.4161/oxim.3.6.14787
  50. Shang, J., Deguchi, K., Yamashita, T., Ohta, Y., Zhang, H., Morimoto, N., Liu, N., Zhang, X., Tian, F., Matsuura, T., Funakoshi, H., Nakamura, T. and Abe, K. (2010) Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J. Neurosci Res. 88, 2197-2206. https://doi.org/10.1002/jnr.22373
  51. Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. J. Antibiot. 28, 721-726. https://doi.org/10.7164/antibiotics.28.721
  52. Dumont, F. J., Staruch, M. J., Koprak, S. L., Melino, M. R. and Sigal, N. H. (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144, 251-258.
  53. Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G. C., Guichard, S. and Pass, M. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288-298. https://doi.org/10.1158/0008-5472.CAN-09-1751
  54. Dees, E. C., Baker, S. D., O'Reilly, S., Rudek, M. A., Davidson, S. B., Aylesworth, C., Elza-Brown, K., Carducci, M. A. and Donehower, R. C. (2005) A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin. Cancer Res. 11, 664-671.
  55. Granville, C. A., Memmott, R. M., Gills, J. J. and Dennis, P. A. (2006) Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 12, 679-689. https://doi.org/10.1158/1078-0432.CCR-05-1654
  56. Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A. and Roy, K. K. (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. 2, 1093-1103.
  57. Ma, W. W. and Jimeno, A. (2007) Temsirolimus. Drugs Today 43, 659-669. https://doi.org/10.1358/dot.2007.43.10.1148059
  58. O'Donnell, A., Faivre, S. and Judson, I. (2003) A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc. Am. Soc. Clin. Oncol. 22, 803.
  59. Sausville, E. A., Arbuck, S. G. and Messmann, R. (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractoryneoplasms. J. Clin. Oncol. 19, 2319-2333. https://doi.org/10.1200/JCO.2001.19.8.2319

Cited by

  1. Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease 2017, https://doi.org/10.1007/s10439-017-1899-0
  2. Cardiovascular Disease and mTOR Signaling vol.21, pp.5, 2011, https://doi.org/10.1016/j.tcm.2012.04.005
  3. Rapamycin Protection of Livers From Ischemia and Reperfusion Injury Is Dependent on Both Autophagy Induction and Mammalian Target of Rapamycin Complex 2-Akt Activation vol.99, pp.1, 2015, https://doi.org/10.1097/TP.0000000000000476
  4. Oxidant Stress and Signal Transduction in the Nervous System with the PI 3-K, Akt, and mTOR Cascade vol.13, pp.12, 2012, https://doi.org/10.3390/ijms131113830
  5. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia vol.316, 2016, https://doi.org/10.1016/j.neuroscience.2015.12.045
  6. Targeting disease through novel pathways of apoptosis and autophagy vol.16, pp.12, 2012, https://doi.org/10.1517/14728222.2012.719499
  7. mTORC2 Phosphorylation of Akt1: A Possible Mechanism for Hydrogen Sulfide-Induced Cardioprotection vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099665
  8. The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer’s Disease, Based on a Mechanistic Target of Rapamycin Pathway vol.31, pp.7, 2017, https://doi.org/10.1007/s40263-017-0431-2
  9. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia vol.9, pp.1, 2012, https://doi.org/10.1186/1742-2094-9-157
  10. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways vol.66, pp.1, 2014, https://doi.org/10.1111/jphp.12154
  11. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin vol.99, pp.2, 2012, https://doi.org/10.1016/j.pneurobio.2012.08.001
  12. Human Umbilical Cord Blood Mononuclear Cells in a Double-Hit Model of Bronchopulmonary Dysplasia in Neonatal Mice vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0074740
  13. Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection vol.398, pp.1-2, 2015, https://doi.org/10.1007/s11010-014-2213-1
  14. Mammalian target of rapamycin signaling in diabetic cardiovascular disease vol.11, pp.1, 2012, https://doi.org/10.1186/1475-2840-11-45
  15. Rapamycin Treatment of Healthy Pigs Subjected to Acute Myocardial Ischemia-Reperfusion Injury Attenuates Cardiac Functions and Increases Myocardial Necrosis vol.97, pp.3, 2014, https://doi.org/10.1016/j.athoracsur.2013.09.059
  16. mTOR inhibitors and diabetes vol.110, pp.2, 2015, https://doi.org/10.1016/j.diabres.2015.09.014
  17. A comparison of LKB1/AMPK/mTOR metabolic axis response to global ischaemia in brain, heart, liver and kidney in a rat model of cardiac arrest vol.19, pp.1, 2018, https://doi.org/10.1186/s12860-018-0159-y
  18. Role of mTORC1 Controlling Proteostasis after Brain Ischemia vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00060