References
- Sarbassov, D. D., Guertin, D. A., Ali, S. M. and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. https://doi.org/10.1126/science.1106148
- Wang, C. Y., Kim, H. H., Hiroi, Y., Sawada, N., Salomone, S., Benjamin, L. E., Walsh, K., Moskowitz, M. A. and Liao, J. K. (2009) Obesity increases vascular senescence and susceptibility to ischemic injury through chronic activation of Akt and mTOR. Sci. Signal. 2, ra11. https://doi.org/10.1126/scisignal.2000143
- Peterson, T. R., Laplante, M., Thoreen, C. C., Sancak, Y., Kang, S. A., Kuehl, W. M., Gray, N. S. and Sabatini, D. M. (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886. https://doi.org/10.1016/j.cell.2009.03.046
- Guertin, D. A. and Sabatini, D. M. (2007) Defining the Role of mTOR in Cancer. Cancer Cell 12, 9-22. https://doi.org/10.1016/j.ccr.2007.05.008
- Bhaskar, P. T. and Hay, N. (2007) The two TORCs and Akt. Dev. Cell. 12, 487-502. https://doi.org/10.1016/j.devcel.2007.03.020
- Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468. https://doi.org/10.1016/S1097-2765(02)00636-6
- Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J. and Sabatini, D. M. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859-871. https://doi.org/10.1016/j.devcel.2006.10.007
- Tokunaga, C., Yoshino, K. and Yonezawa, K. (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 313, 443-446. https://doi.org/10.1016/j.bbrc.2003.07.019
- Ma, X. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318. https://doi.org/10.1038/nrm2672
- Huang, J. and Manning, B. D. (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190. https://doi.org/10.1042/BJ20080281
- Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
- Zhang, H., Bajraszewski, N., Wu, E., Wang, H., Moseman, A. P., Dabora, S. L., Griffin, J. D. and Kwiatkowski, D. J. (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Invest. 117, 730-738. https://doi.org/10.1172/JCI28984
- Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657. https://doi.org/10.1038/ncb839
- Kovacina, K. S., Park, G. Y., Bae, S. S., Guzzetta, A. W., Schaefer, E., Birnbaum, M. J. and Roth, R. A. (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189-10194. https://doi.org/10.1074/jbc.M210837200
- Huang, B. and Porter, G. (2005) Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta. Pharmacol. Sin. 26, 1253-1258. https://doi.org/10.1111/j.1745-7254.2005.00184.x
- Vander, H. E., Lee, S. I., Bandhakavi, S., Griffin, T. J. and Kim, D. H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316-323. https://doi.org/10.1038/ncb1547
- Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A. and Sabatini, D. M. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915. https://doi.org/10.1016/j.molcel.2007.03.003
- Hanada, M., Feng, J. and Hemmings, B. A. (2004) Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta. 1697, 3-16. https://doi.org/10.1016/j.bbapap.2003.11.009
- Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S. Y., Huang, Q., Qin, J. and Su, B. (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137. https://doi.org/10.1016/j.cell.2006.08.033
- Huang, J., Dibble, C. C., Matsuzaki, M. and Manning, B. D. (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell Biol. 28, 4104-4115. https://doi.org/10.1128/MCB.00289-08
- Huang, J., Wu, S., Wu, C. L. and Manning, B. D. (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 69, 6107-6114.
- Wullschleger, S., Loewith, R. and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484. https://doi.org/10.1016/j.cell.2006.01.016
- Shen, W. H., Chen, Z., Shi, S., Chen, H., Zhu, W., Penner A., Bu, G., Li, W., Boyle, D. W., Rubart, M., Field, L. J., Abraham, R., Liechty, E. A. and Shou, W. (2008) Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J. Biol. Chem. 283, 13842-13849. https://doi.org/10.1074/jbc.M801510200
- Tong, H., Chen, W., Steenbergen, C. and Murphy, E. (2000) Ischemic preconditioning activates phosphatidylinositol- 3-kinase upstream of protein kinase C. Circ. Res. 87, 309-315. https://doi.org/10.1161/01.RES.87.4.309
- Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W. and Kukreja, R. C. (2006) Rapamycin confers preconditioning- like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell Cardiol. 41, 256-264. https://doi.org/10.1016/j.yjmcc.2006.04.014
- Murphy, E. and Steenbergen, C. (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581-609. https://doi.org/10.1152/physrev.00024.2007
- Balasubramanian, S., Johnston, R. K., Moschella, P. C., Mani, S. K., Tuxworth, W. J., Jr. and Kuppuswamy, D. (2009) mTOR in growth and protection of hypertrophying myocardium. Cardiovasc. Hematol. Agents Med. Chem. 7, 52-63. https://doi.org/10.2174/187152509787047603
- Jonassen, A. K., Sack, M. N., Mjos, O. D. and Yellon, D. M. (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cellsurvival signaling. Circ. Res. 89, 1191-1198. https://doi.org/10.1161/hh2401.101385
- Oudit, G. Y. and Penninger, J. M. (2009) Cardiac Regulation by Phosphoinositide 3-kinases and PTEN. Cardiovasc. Res. 250-260.
- Lyons, W. E., George, E. B., Dawson, T. M., Steiner, J. P. and Snyder, S. H. (1994) Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory gangli. Proc. Natl. Acad. Sci. U.S.A. 91, 3191-3195. https://doi.org/10.1073/pnas.91.8.3191
- Steiner, J. P., Connolly, M. A., Valentine, H. L., Hamilton, G. S., Dawson, T. M., Hester, L. and Snyder, S. H. (1997) Neurotropic actions of nonimmuosuppressive analogues of immunosuppressive drugs FK506, rapamycin, and cyclosporine A. Nat. Med. 3, 421-428. https://doi.org/10.1038/nm0497-421
- Erlich, S., Alexandrovich, A., Shohami, E. and Pinkas K. R. (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26, 86-93. https://doi.org/10.1016/j.nbd.2006.12.003
- Ruan, B., Pong, K., Jow, F., Bowlby, M., Crozier, R. A., Liu, D., Liang, S., Chen, Y., Mercado, M. L., Feng, X., Bennett, F., von, S. D., McDonald, L., Zeleska, M. M., Wood, A., Reinhart, P. H., Magolda, R. L., Skotnicki, J., Pangalos, M. N., Koehn, F. E. Carter, G. T., Abou, G. M. and Graziani, E. l. (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc. Natl. Acad. Sci. U.S.A. 105, 33-38. https://doi.org/10.1073/pnas.0710424105
- Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M. and Balduini, W. (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy. 6, 366-377. https://doi.org/10.4161/auto.6.3.11261
- Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., Bauer, E. P., Klovekorn, W. P. and Schaper, J. (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984-991. https://doi.org/10.1161/01.CIR.0000051865.66123.B7
- Lekli, I., Ray, D., Mukherjee, S., Gurusamy, N., Ahsan, M. K., Juhasz, B., Bak, I., Tosaki, A., Gherghiceanu, M., Popescu, L. M. and Das, D. K. (2010) Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J. Cell Mol. Med. 14, 2506-2518. https://doi.org/10.1111/j.1582-4934.2009.00921.x
- Ma, H., Guo, R., Yu, L., Zhang, Y. and Ren, J. (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32, 1025-1038. https://doi.org/10.1093/eurheartj/ehq253
- Zhang, Z., Yu, B. and Tao, G. Z. (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin. Med. J. (Engl). 122, 2360-2365.
- Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M. K., Gherghiceanu, M., Popescu, L. M., Das, D. K. (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103-112. https://doi.org/10.1093/cvr/cvp384
- Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon, C. C. and Pandolfi, P. P. (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523-527. https://doi.org/10.1038/nature04809
- Ayuso, M. I., Hernandez, J. M., Martin, M. E., Salinas, M. and Alcazar, A. (2010) New hierarchical phosphorylation pathway of the translational repressor elF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J. Biol. Chem. 285, 34355-34363. https://doi.org/10.1074/jbc.M110.135103
- Koh, P. O. (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci. Lett. 444, 74-78. https://doi.org/10.1016/j.neulet.2008.08.024
- Koh, P. O. (2010) Gingko biloba extract (EGb 761) prevents cerebral ischemia-induced p70S6 kinase and S6 phosphorylation. Am. J. Chin. Med. 38, 727-734. https://doi.org/10.1142/S0192415X10008196
- Shi, G. D., OuYang, Y. P., Shi, J. G., Liu, Y., Yuan, W. and Jia, L. S. (2011) PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun. 404, 941-945. https://doi.org/10.1016/j.bbrc.2010.12.085
- Huang, C. Y., Hsiao, J. K., Lu, Y. Z., Lee, T. C. and Yu, L. C. (2011) Anti-apoptotic PI3K/Akt signaling by sodium/ glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab Invest. 91, 294-309. https://doi.org/10.1038/labinvest.2010.177
- Zhang, Y. and Ren, J. (2010) Autophagy in ALDH2- elicited cardioprotection against ischemic heart disease: slayer or savior? Autophagy. 6, 1212-1213. https://doi.org/10.4161/auto.6.8.13652
- Zhang, L., Yang, Y., Wang, Y. and Gao, X. (2011) Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 66, 144-150.
-
Vigneron, F., Dos, S. P., Lemoine, S., Bonnet, M., Tariosse, L., Couffinhal, T., Duplaa, C. and Jaspard, -V. B. (2011) GSK-3
$\beta$ at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res. 90, 49-56. https://doi.org/10.1093/cvr/cvr002 - Chong, Z. Z., Shang, Y. C., Zhang, L., Wang, S. and Maiese, K. (2010) Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxid. Med. Cell. Longev. 3, 374-391. https://doi.org/10.4161/oxim.3.6.14787
- Shang, J., Deguchi, K., Yamashita, T., Ohta, Y., Zhang, H., Morimoto, N., Liu, N., Zhang, X., Tian, F., Matsuura, T., Funakoshi, H., Nakamura, T. and Abe, K. (2010) Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J. Neurosci Res. 88, 2197-2206. https://doi.org/10.1002/jnr.22373
- Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. J. Antibiot. 28, 721-726. https://doi.org/10.7164/antibiotics.28.721
- Dumont, F. J., Staruch, M. J., Koprak, S. L., Melino, M. R. and Sigal, N. H. (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144, 251-258.
- Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G. C., Guichard, S. and Pass, M. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288-298. https://doi.org/10.1158/0008-5472.CAN-09-1751
- Dees, E. C., Baker, S. D., O'Reilly, S., Rudek, M. A., Davidson, S. B., Aylesworth, C., Elza-Brown, K., Carducci, M. A. and Donehower, R. C. (2005) A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin. Cancer Res. 11, 664-671.
- Granville, C. A., Memmott, R. M., Gills, J. J. and Dennis, P. A. (2006) Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 12, 679-689. https://doi.org/10.1158/1078-0432.CCR-05-1654
- Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A. and Roy, K. K. (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. 2, 1093-1103.
- Ma, W. W. and Jimeno, A. (2007) Temsirolimus. Drugs Today 43, 659-669. https://doi.org/10.1358/dot.2007.43.10.1148059
- O'Donnell, A., Faivre, S. and Judson, I. (2003) A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc. Am. Soc. Clin. Oncol. 22, 803.
- Sausville, E. A., Arbuck, S. G. and Messmann, R. (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractoryneoplasms. J. Clin. Oncol. 19, 2319-2333. https://doi.org/10.1200/JCO.2001.19.8.2319
Cited by
- Proteomic Alterations Associated with Biomechanical Dysfunction are Early Processes in the Emilin1 Deficient Mouse Model of Aortic Valve Disease 2017, https://doi.org/10.1007/s10439-017-1899-0
- Cardiovascular Disease and mTOR Signaling vol.21, pp.5, 2011, https://doi.org/10.1016/j.tcm.2012.04.005
- Rapamycin Protection of Livers From Ischemia and Reperfusion Injury Is Dependent on Both Autophagy Induction and Mammalian Target of Rapamycin Complex 2-Akt Activation vol.99, pp.1, 2015, https://doi.org/10.1097/TP.0000000000000476
- Oxidant Stress and Signal Transduction in the Nervous System with the PI 3-K, Akt, and mTOR Cascade vol.13, pp.12, 2012, https://doi.org/10.3390/ijms131113830
- Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia vol.316, 2016, https://doi.org/10.1016/j.neuroscience.2015.12.045
- Targeting disease through novel pathways of apoptosis and autophagy vol.16, pp.12, 2012, https://doi.org/10.1517/14728222.2012.719499
- mTORC2 Phosphorylation of Akt1: A Possible Mechanism for Hydrogen Sulfide-Induced Cardioprotection vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099665
- The Molecular Mechanism of Glucagon-Like Peptide-1 Therapy in Alzheimer’s Disease, Based on a Mechanistic Target of Rapamycin Pathway vol.31, pp.7, 2017, https://doi.org/10.1007/s40263-017-0431-2
- Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia vol.9, pp.1, 2012, https://doi.org/10.1186/1742-2094-9-157
- Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways vol.66, pp.1, 2014, https://doi.org/10.1111/jphp.12154
- Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin vol.99, pp.2, 2012, https://doi.org/10.1016/j.pneurobio.2012.08.001
- Human Umbilical Cord Blood Mononuclear Cells in a Double-Hit Model of Bronchopulmonary Dysplasia in Neonatal Mice vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0074740
- Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection vol.398, pp.1-2, 2015, https://doi.org/10.1007/s11010-014-2213-1
- Mammalian target of rapamycin signaling in diabetic cardiovascular disease vol.11, pp.1, 2012, https://doi.org/10.1186/1475-2840-11-45
- Rapamycin Treatment of Healthy Pigs Subjected to Acute Myocardial Ischemia-Reperfusion Injury Attenuates Cardiac Functions and Increases Myocardial Necrosis vol.97, pp.3, 2014, https://doi.org/10.1016/j.athoracsur.2013.09.059
- mTOR inhibitors and diabetes vol.110, pp.2, 2015, https://doi.org/10.1016/j.diabres.2015.09.014
- A comparison of LKB1/AMPK/mTOR metabolic axis response to global ischaemia in brain, heart, liver and kidney in a rat model of cardiac arrest vol.19, pp.1, 2018, https://doi.org/10.1186/s12860-018-0159-y
- Role of mTORC1 Controlling Proteostasis after Brain Ischemia vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00060