DOI QR코드

DOI QR Code

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil (Division of Life and Pharmaceutical Sciences, Ewha Womans University) ;
  • Oh, Goo-Taeg (College of Veterinary Medicine, Seoul National University)
  • 투고 : 2011.08.02
  • 발행 : 2011.08.31

초록

Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

키워드

참고문헌

  1. Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V. L., Rosamond, W., Sacco, R., Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D. and Wylie-Rosett, J. (2010) Executive summary: heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 121, 948-954. https://doi.org/10.1161/CIRCULATIONAHA.109.192666
  2. Ross, R. (1999) Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 340, 115-126. https://doi.org/10.1056/NEJM199901143400207
  3. Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868-874. https://doi.org/10.1038/nature01323
  4. Charo, I. F. and Taub, R. (2011) Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat. Rev. Drug. Discov. 10, 365-376. https://doi.org/10.1038/nrd3444
  5. Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y., Territo, M. C., Lusis, A. J., Shih, D. M., Van Lenten, B. J., Frank, J. S., Demer, L. L., Edwards, P. A. and Fogelman, A. M. (1996) The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16, 831-842. https://doi.org/10.1161/01.ATV.16.7.831
  6. Navab, M., Ananthramaiah, G. M., Reddy, S. T., Van Lenten, B. J., Ansell, B. J., Fonarow, G. C., Vahabzadeh, K., Hama, S., Hough, G., Kamranpour, N., Berliner, J. A., Lusis, A. J. and Fogelman, A. M. (2004) The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid. Res. 45, 993-1007. https://doi.org/10.1194/jlr.R400001-JLR200
  7. Vora, D. K., Fang, Z. T., Liva, S. M., Tyner, T. R., Parhami, F., Watson, A. D., Drake, T. A., Territo, M. C. and Berliner, J. A. (1997) Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ. Res. 80, 810-818. https://doi.org/10.1161/01.RES.80.6.810
  8. Takei, A., Huang, Y. and Lopes-Virella, M. F. (2001) Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis 154, 79-86. https://doi.org/10.1016/S0021-9150(00)00465-2
  9. Klouche, M., May, A. E., Hemmes, M., Messner, M., Kanse, S. M., Preissner, K. T. and Bhakdi, S. (1999) Enzymatically modified, nonoxidized LDL induces selective adhesion and transmigration of monocytes and T-lymphocytes through human endothelial cell monolayers. Arterioscler. Thromb. Vasc. Biol. 19, 784-793. https://doi.org/10.1161/01.ATV.19.3.784
  10. Khan, B. V., Parthasarathy, S. S., Alexander, R. W. and Medford, R. M. (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest. 95, 1262-1270. https://doi.org/10.1172/JCI117776
  11. Cushing, S. D., Berliner, J. A., Valente, A. J., Territo, M. C., Navab, M., Parhami, F., Gerrity, R., Schwartz, C. J. and Fogelman, A. M. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A 87, 5134-5138. https://doi.org/10.1073/pnas.87.13.5134
  12. Rajavashisth, T. B., Andalibi, A., Territo, M. C., Berliner, J. A., Navab, M., Fogelman, A. M. and Lusis, A. J. (1990) Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254-257. https://doi.org/10.1038/344254a0
  13. Wittchen, E. S. (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front. Biosci. 14, 2522-2545.
  14. Lyons, T. J. (1993) Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am. J. Cardiol. 71, 26B-31B. https://doi.org/10.1016/0002-9149(93)90142-Y
  15. Shibata, N. and Glass, C. K. (2009) Regulation of macrophage function in inflammation and atherosclerosis. J. Lipid. Res. 50 Suppl, S277-281. https://doi.org/10.1194/jlr.R800063-JLR200
  16. Madamanchi, N. R., Vendrov, A. and Runge, M. S. (2005) Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 29-38.
  17. Glass, C. K. and Witztum, J. L. (2001) Atherosclerosis. the road ahead. Cell. 104, 503-516. https://doi.org/10.1016/S0092-8674(01)00238-0
  18. Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. and Mann, J. (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart. J. 69, 377-381. https://doi.org/10.1136/hrt.69.5.377
  19. Brandes, R. P. and Kreuzer, J. (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc. Res. 65, 16-27. https://doi.org/10.1016/j.cardiores.2004.08.007
  20. Cai, H. (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ. Res. 96, 818-822. https://doi.org/10.1161/01.RES.0000163631.07205.fb
  21. Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R. A., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D. G., Forstermann, U. and Munzel, T. (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14-22. https://doi.org/10.1161/01.RES.88.2.e14
  22. Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J. H., Skatchkov, M., Heitzer, T., Stasch, J. P., Griendling, K. K., Harrison, D. G., Bohm, M., Meinertz, T. and Munzel, T. (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99, 2027-2033. https://doi.org/10.1161/01.CIR.99.15.2027
  23. Li, H., Witte, K., August, M., Brausch, I., Godtel-Armbrust, U., Habermeier, A., Closs, E. I., Oelze, M., Munzel, T. and Forstermann, U. (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J. Am. Coll. Cardiol 47, 2536-2544. https://doi.org/10.1016/j.jacc.2006.01.071
  24. Forstermann, U. (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med. 5, 338-349. https://doi.org/10.1038/ncpcardio1211
  25. Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R. and Griendling, K. K. (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105, 1429-1435. https://doi.org/10.1161/01.CIR.0000012917.74432.66
  26. Barry-Lane, P. A., Patterson, C., van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. and Runge, M. S. (2001) p47phox is required for atherosclerotic lesion progression in ApoE(−/−) mice. J. Clin. Invest. 108, 1513-1522. https://doi.org/10.1172/JCI200111927
  27. Schroder, K., Vecchione, C., Jung, O., Schreiber, J. G., Shiri-Sverdlov, R., van Gorp, P. J., Busse, R. and Brandes, R. P. (2006) Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free. Radic. Biol. Med. 41, 1353-1360. https://doi.org/10.1016/j.freeradbiomed.2006.03.026
  28. Choi, J. H., Jeon, H. J., Park, J. G., Sonn, S. K., Lee, M. R., Lee, M. N., You, H. J., Kim, G. Y., Kim, J. H., Lee, M. H., Kwon, O. S., Nam, K. H., Kim, H. C., Jeong, T. S., Lee, W. S. and Oh, G. T. (2010) Anti-atherogenic effect of BHBTZD having inhibitory activities on cyclooxygenase and 5-lipoxygenase in hyperlipidemic mice. Atherosclerosis. 212, 146-152. https://doi.org/10.1016/j.atherosclerosis.2010.05.003
  29. Choi, J. H., Park, J. G., Jeon, H. J., Kim, M. S., Lee, M. R., Lee, M. N., Sonn, S., Kim, J. H., Lee, M. H., Choi, M. S., Park, Y. B., Kwon, O. S., Jeong, T. S., Lee, W. S., Shim, H. B., Shin, D. H. and Oh, G. T. (2011) HMB-TZD attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion. Exp. Mol. Med. (In press).
  30. Rhee, S. G., Chang, T. S., Bae, Y. S., Lee, S. R. and Kang, S. W. (2003) Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol. 14, S211-215. https://doi.org/10.1097/01.ASN.0000077404.45564.7E
  31. Wood, Z. A., Poole, L. B. and Karplus, P. A. (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
  32. Babior, B. M. (1999) NADPH oxidase: an update. Blood. 93, 1464-1476.
  33. Lambeth, J. D. (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr. Opin. Hematol. 9, 11-17. https://doi.org/10.1097/00062752-200201000-00003
  34. Cai, H. (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68, 26-36. https://doi.org/10.1016/j.cardiores.2005.06.021
  35. Hancock, J. T., Desikan, R. and Neill, S. J. (2001) Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29, 345-350. https://doi.org/10.1042/BST0290345
  36. Allen, R. G. and Tresini, M. (2000) Oxidative stress and gene regulation. Free. Radic. Biol. Med. 28, 463-499. https://doi.org/10.1016/S0891-5849(99)00242-7
  37. Kehrer, J. P. (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 149, 43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
  38. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296
  39. Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B. and Rhee, S. G. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221. https://doi.org/10.1074/jbc.272.1.217
  40. Mahadev, K., Zilbering, A., Zhu, L. and Goldstein, B. J. (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938-21942. https://doi.org/10.1074/jbc.C100109200
  41. Meng, T. C., Fukada, T. and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell. 9, 387-399. https://doi.org/10.1016/S1097-2765(02)00445-8
  42. Ruiz-Gines, J. A., Lopez-Ongil, S., Gonzalez-Rubio, M., Gonzalez-Santiago, L., Rodriguez-Puyol, M. and Rodriguez- Puyol, D. (2000) Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J. Cardiovasc. Pharmacol. 35, 109-113. https://doi.org/10.1097/00005344-200001000-00014
  43. Zanetti, M., Katusic, Z. S. and O'Brien, T. (2002) Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am. J. Physiol. Heart. Circ. Physiol. 283, H2620-2626. https://doi.org/10.1152/ajpheart.00358.2001
  44. Faucher, K., Rabinovitch-Chable, H., Barriere, G., Cook- Moreau, J. and Rigaud, M. (2003) Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie. 85, 611-617. https://doi.org/10.1016/S0300-9084(03)00089-0
  45. Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J. and Galeotti, T. (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 277, 3101-3108. https://doi.org/10.1074/jbc.M107711200
  46. Abe, J., Okuda, M., Huang, Q., Yoshizumi, M. and Berk, B. C. (2000) Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J. Biol. Chem. 275, 1739-1748. https://doi.org/10.1074/jbc.275.3.1739
  47. Wung, B. S., Cheng, J. J., Chao, Y. J., Hsieh, H. J. and Wang, D. L. (1999) Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response- 1 gene expression in endothelial cells. Circ. Res. 84, 804-812. https://doi.org/10.1161/01.RES.84.7.804
  48. Zembowicz, A., Hatchett, R. J., Jakubowski, A. M. and Gryglewski, R. J. (1993) Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Br. J. Pharmacol. 110, 151-158. https://doi.org/10.1111/j.1476-5381.1993.tb13785.x
  49. Yang, Z., Zhang, A., Altura, B. T. and Altura, B. M. (1999) Hydrogen peroxide-induced endothelium-dependent relaxation of rat aorta involvement of Ca2+ and other cellular metabolites. Gen. Pharmacol. 33, 325-336. https://doi.org/10.1016/S0306-3623(99)00019-1
  50. Cominacini, L., Pasini, A. F., Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A., Pastorino, A. M., Lo Cascio, V. and Sawamura, T. (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633-12638. https://doi.org/10.1074/jbc.275.17.12633
  51. Chen, M., Masaki, T. and Sawamura, T. (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 95, 89-100. https://doi.org/10.1016/S0163-7258(02)00236-X
  52. Manna, S. K., Zhang, H. J., Yan, T., Oberley, L. W. and Aggarwal, B. B. (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J. Biol. Chem. 273, 13245-13254. https://doi.org/10.1074/jbc.273.21.13245
  53. Muller, J. M., Rupec, R. A. and Baeuerle, P. A. (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods. 11, 301-312. https://doi.org/10.1006/meth.1996.0424
  54. Yoon, J. J., Lee, Y. J., Kim, J. S., Kang, D. G. and Lee, H. S. (2010) Protective role of betulinic acid on TNF-alpha-induced cell adhesion molecules in vascular endothelial cells. Biochem. Biophys. Res. Commun. 391, 96-101. https://doi.org/10.1016/j.bbrc.2009.11.009
  55. Yoshizumi, M., Fujita, Y., Izawa, Y., Suzaki, Y., Kyaw, M., Ali, N., Tsuchiya, K., Kagami, S., Yano, S., Sone, S. and Tamaki, T. (2004) Ebselen inhibits tumor necrosis factor- alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp. Cell. Res. 292, 1-10. https://doi.org/10.1016/j.yexcr.2003.08.003
  56. Park, J. G., Yoo, J. Y., Jeong, S. J., Choi, J. H., Lee, M. R., Lee, M. N., Lee, J. H., Kim, H. C., Jo, H., Yu, D. Y., Kang, S. W., Rhee, S. G., Lee, M. H. and Oh, G. T. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Cir. Res. (In press).
  57. Silverstein, R. L., Li, W., Park, Y. M. and Rahaman, S. O. (2010) Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans. Am. Clin. Climatol. Assoc. 121, 206-220.
  58. Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., Halle, A., Rayner, K. J., Boyer, L., Zhong, R., Frazier, W. A., Lacy-Hulbert, A., El Khoury, J., Golenbock, D. T. and Moore, K. J. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155-161. https://doi.org/10.1038/ni.1836
  59. Miller, Y. I., Viriyakosol, S., Binder, C. J., Feramisco, J. R., Kirkland, T. N. and Witztum, J. L. (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561-1568. https://doi.org/10.1074/jbc.M209634200
  60. Miller, Y. I., Viriyakosol, S., Worrall, D. S., Boullier, A., Butler, S. and Witztum, J. L. (2005) Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25, 1213-1219. https://doi.org/10.1161/01.ATV.0000159891.73193.31
  61. Bae, Y. S., Lee, J. H., Choi, S. H., Kim, S., Almazan, F., Witztum, J. L. and Miller, Y. I. (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210-218. https://doi.org/10.1161/CIRCRESAHA.108.181040
  62. Kamata, H. and Hirata, H. (1999) Redox regulation of cellular signalling. Cell. Signal. 11, 1-14. https://doi.org/10.1016/S0898-6568(98)00037-0
  63. Forman, H. J. and Torres, M. (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care. Med. 166, S4-8. https://doi.org/10.1164/rccm.2206007
  64. Rhee, J. W., Lee, K. W., Kim, D., Lee, Y., Jeon, O. H., Kwon, H. J. and Kim, D. S. (2007) NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J. Biochem. Mol. Biol. 40, 88-94. https://doi.org/10.5483/BMBRep.2007.40.1.088
  65. Han, K. Y., Kwon, T. H., Lee, T. H., Lee, S. J., Kim, S. H. and Kim, J. (2008) Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells. BMB Rep. 41, 328-333. https://doi.org/10.5483/BMBRep.2008.41.4.328
  66. Abate, C., Patel, L., Rauscher, F. J., 3rd and Curran, T. (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science. 249, 1157-1161. https://doi.org/10.1126/science.2118682
  67. Ogawa, S., Lozach, J., Benner, C., Pascual, G., Tangirala, R. K., Westin, S., Hoffmann, A., Subramaniam, S., David, M., Rosenfeld, M. G. and Glass, C. K. (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707-721. https://doi.org/10.1016/j.cell.2005.06.029
  68. Roebuck, K. A., Carpenter, L. R., Lakshminarayanan, V., Page, S. M., Moy, J. N. and Thomas, L. L. (1999) Stimulusspecific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J. Leukoc. Biol. 65, 291-298. https://doi.org/10.1002/jlb.65.3.291
  69. Taniyama, Y. and Griendling, K. K. (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42, 1075-1081. https://doi.org/10.1161/01.HYP.0000100443.09293.4F
  70. Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A. and Rhee, S. G. (2000) Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 10527-10531. https://doi.org/10.1074/jbc.275.14.10527
  71. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., Park, H. S., Kim, K. Y., Lee, J. S., Choi, C., Bae, Y. S., Lee, B. I., Rhee, S. G. and Kang, S. W. (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347-353. https://doi.org/10.1038/nature03587
  72. Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T. and Griendling, K. K. (2004) Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species- dependent regulation of platelet-derived growth factor- induced smooth muscle cell migration. Circ. Res. 94, 1219-1226. https://doi.org/10.1161/01.RES.0000126848.54740.4A
  73. Rudijanto, A. (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta. Med. Indones 39, 86-93.
  74. Grote, K., Flach, I., Luchtefeld, M., Akin, E., Holland, S. M., Drexler, H. and Schieffer, B. (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ. Res. 92, e80-86. https://doi.org/10.1161/01.RES.0000077044.60138.7C
  75. Rajagopalan, S., Meng, X. P., Ramasamy, S., Harrison, D. G. and Galis, Z. S. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572-2579. https://doi.org/10.1172/JCI119076
  76. De Keulenaer, G. W., Ushio-Fukai, M., Yin, Q., Chung, A. B., Lyons, P. R., Ishizaka, N., Rengarajan, K., Taylor, W. R., Alexander, R. W. and Griendling, K. K. (2000) Convergence of redox-sensitive and mitogen-activated protein kinase signaling pathways in tumor necrosis factor-alphamediated monocyte chemoattractant protein-1 induction in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 385-391. https://doi.org/10.1161/01.ATV.20.2.385
  77. von Harsdorf, R., Li, P. F. and Dietz, R. (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99, 2934-2941. https://doi.org/10.1161/01.CIR.99.22.2934
  78. Chelikani, P., Fita, I. and Loewen, P. C. (2004) Diversity of structures and properties among catalases. Cell. Mol. Life. Sci. 61, 192-208. https://doi.org/10.1007/s00018-003-3206-5
  79. Yang, H., Roberts, L. J., Shi, M. J., Zhou, L. C., Ballard, B. R., Richardson, A. and Guo, Z. M. (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ. Res. 95, 1075-1081. https://doi.org/10.1161/01.RES.0000149564.49410.0d
  80. Lin, S. J., Shyue, S. K., Shih, M. C., Chu, T. H., Chen, Y. H., Ku, H. H., Chen, J. W., Tam, K. B. and Chen, Y. L. (2007) Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen- activated protein kinases, and transcription factors. Atherosclerosis. 190, 124-134. https://doi.org/10.1016/j.atherosclerosis.2006.02.044
  81. Margis, R., Dunand, C., Teixeira, F. K. and Margis-Pinheiro, M. (2008) Glutathione peroxidase family - an evolutionary overview. FEBS J 275, 3959-3970. https://doi.org/10.1111/j.1742-4658.2008.06542.x
  82. Wagner, A. H., Kautz, O., Fricke, K., Zerr-Fouineau, M., Demicheva, E., Guldenzoph, B., Bermejo, J. L., Korff, T. and Hecker, M. (2009) Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 1894-1901. https://doi.org/10.1161/ATVBAHA.109.194738
  83. Torzewski, M., Ochsenhirt, V., Kleschyov, A. L., Oelze, M., Daiber, A., Li, H., Rossmann, H., Tsimikas, S., Reifenberg, K., Cheng, F., Lehr, H. A., Blankenberg, S., Forstermann, U., Munzel, T. and Lackner, K. J. (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 850-857. https://doi.org/10.1161/01.ATV.0000258809.47285.07
  84. Lewis, P., Stefanovic, N., Pete, J., Calkin, A. C., Giunti, S., Thallas-Bonke, V., Jandeleit-Dahm, K. A., Allen, T. J., Kola, I., Cooper, M. E. and de Haan, J. B. (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115, 2178-2187. https://doi.org/10.1161/CIRCULATIONAHA.106.664250
  85. Blankenberg, S., Rupprecht, H. J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J. and Lackner, K. J. (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605-1613. https://doi.org/10.1056/NEJMoa030535
  86. Loeper, J., Goy, J., Rozensztajn, L., Bedu, O. and Moisson, P. (1991) Lipid peroxidation and protective enzymes during myocardial infarction. Clin. Chim. Acta. 196, 119-125. https://doi.org/10.1016/0009-8981(91)90064-J
  87. Espinola-Klein, C., Rupprecht, H. J., Bickel, C., Schnabel, R., Genth-Zotz, S., Torzewski, M., Lackner, K., Munzel, T. and Blankenberg, S. (2007) Glutathione peroxidase-1 activity, atherosclerotic burden, and cardiovascular prognosis. Am. J. Cardiol. 99, 808-812. https://doi.org/10.1016/j.amjcard.2006.10.041
  88. Guo, Z., Ran, Q., Roberts, L. J., 2nd, Zhou, L., Richardson, A., Sharan, C., Wu, D. and Yang, H. (2008) Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free. Radic. Biol. Med. 44, 343-352. https://doi.org/10.1016/j.freeradbiomed.2007.09.009
  89. Chae, H. Z., Kim, H. J., Kang, S. W. and Rhee, S. G. (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes. Res. Clin. Pract. 45, 101-112. https://doi.org/10.1016/S0168-8227(99)00037-6
  90. Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., Jurgens, G., Forsman-Semb, K. and Paigen, B. (2004) Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis. 177, 61-70. https://doi.org/10.1016/j.atherosclerosis.2004.06.007
  91. Rhee, S. G., Chae, H. Z. and Kim, K. (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free. Radic. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
  92. Conway, J. P. and Kinter, M. (2006) Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281, 27991-28001. https://doi.org/10.1074/jbc.M605026200
  93. Mowbray, A. L., Kang, D. H., Rhee, S. G., Kang, S. W. and Jo, H. (2008) Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J. Biol. Chem. 283, 1622-1627. https://doi.org/10.1074/jbc.M707985200
  94. Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Van Etten, R. A., Krieger, M. and Wagner, D. D. (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ. Res. 103, 598-605. https://doi.org/10.1161/CIRCRESAHA.108.174870
  95. Rhee, S. G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882-1883. https://doi.org/10.1126/science.1130481
  96. Moon, E. Y., Noh, Y. W., Han, Y. H., Kim, S. U., Kim, J. M., Yu, D. Y. and Lim, J. S. (2006) T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene. Immunol. Lett. 102, 184-190. https://doi.org/10.1016/j.imlet.2005.09.003
  97. Yang, C. S., Lee, D. S., Song, C. H., An, S. J., Li, S., Kim, J. M., Kim, C. S., Yoo, D. G., Jeon, B. H., Yang, H. Y., Lee, T. H., Lee, Z. W., El-Benna, J., Yu, D. Y. and Jo, E. K. (2007) Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin- induced lethal shock. J. Exp. Med. 204, 583-594. https://doi.org/10.1084/jem.20061849
  98. Martinez-Pinna, R., Ramos-Mozo, P., Madrigal-Matute, J., Blanco-Colio, L. M., Lopez, J. A., Calvo, E., Camafeita, E., Lindholt, J. S., Meilhac, O., Delbosc, S., Michel, J. B., de Ceniga, M. V., Egido, J. and Martin-Ventura, J. L. (2011) Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 31, 935-943. https://doi.org/10.1161/ATVBAHA.110.214429
  99. Urbonavicius, S., Lindholt, J. S., Vorum, H., Urbonaviciene, G., Henneberg, E. W. and Honore, B. (2009) Proteomic identification of differentially expressed proteins in aortic wall of patients with ruptured and nonruptured abdominal aortic aneurysms. J. Vasc. Surg. 49, 455-463. https://doi.org/10.1016/j.jvs.2008.08.097
  100. Chew, P., Yuen, D. Y., Koh, P., Stefanovic, N., Febbraio, M. A., Kola, I., Cooper, M. E. and de Haan, J. B. (2009) Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 29, 823-830. https://doi.org/10.1161/ATVBAHA.109.186619
  101. Kim, J., Nam, K. H., Kim, S. O., Choi, J. H., Kim, H. C., Yang, S. D., Kang, J. H., Ryu, Y. H., Oh, G. T. and Yoo, S. E. (2004) KR-31378 ameliorates atherosclerosis by blocking monocyte recruitment in hypercholestrolemic mice. FASEB J. 18, 714-716. https://doi.org/10.1096/fj.03-0652fje
  102. Nam, K. H., Choi, J. H., Seo, Y. J., Lee, Y. M., Won, Y. S., Lee, M. R., Lee, M. N., Park, J. G., Kim, Y. M., Kim, H. C., Lee, C. H., Lee, H. K., Oh, S. R. and Oh, G. T. (2006) Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp. Mol. Med. 38, 445-452. https://doi.org/10.1038/emm.2006.52
  103. Steinhubl, S. R. (2008) Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14D-19D.

피인용 문헌

  1. The protective effect of North Schisandra Lignans on vascular endothelial cell oxidation injuries vol.24, pp.s2, 2016, https://doi.org/10.3233/THC-161192
  2. Luteolin Suppresses the Differentiation of THP-1 Cells through the Inhibition of NOX2 mRNA Expression and the Membrane Translocation of p47phox vol.76, pp.7, 2013, https://doi.org/10.1021/np400224w
  3. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases vol.31, pp.1, 2014, https://doi.org/10.1039/C3NP70065H
  4. Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.082
  5. VPO1 Mediates ApoE Oxidation and Impairs the Clearance of Plasma Lipids vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0057571
  6. Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages vol.66, pp.3, 2014, https://doi.org/10.1016/j.pharep.2013.11.008
  7. Serum Oxidant and Antioxidant Status in Adolescents Undergoing Professional Endurance Sports Training vol.2012, 2012, https://doi.org/10.1155/2012/741239
  8. CML/RAGE signal induces calcification cascade in diabetes vol.8, pp.1, 2016, https://doi.org/10.1186/s13098-016-0196-7
  9. Translocator Protein (18 kDa): A Promising Therapeutic Target and Diagnostic Tool for Cardiovascular Diseases vol.2012, 2012, https://doi.org/10.1155/2012/162934
  10. Prdx1-encoded peroxiredoxin is important for vascular development in zebrafish vol.591, pp.6, 2017, https://doi.org/10.1002/1873-3468.12604
  11. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase vol.45, pp.7, 2012, https://doi.org/10.5483/BMBRep.2012.45.7.088
  12. Oxidative modification of ferritin induced by methylglyoxal vol.45, pp.3, 2012, https://doi.org/10.5483/BMBRep.2012.45.3.147
  13. Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte–Macrophage Differentiation vol.63, pp.40, 2015, https://doi.org/10.1021/acs.jafc.5b04083
  14. In Vitro Activity-Guided Identification of Antioxidants in Aged Garlic Extract vol.61, pp.12, 2013, https://doi.org/10.1021/jf305549g
  15. The protective effect of Prunella vulgaris ethanol extract against vascular inflammation in TNF-α-stimulated human aortic smooth muscle cells vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.214
  16. The HIF1A rs2057482 polymorphism is associated with risk of developing premature coronary artery disease and with some metabolic and cardiovascular risk factors. The Genetics of Atherosclerotic Disease (GEA) Mexican Study vol.96, pp.3, 2014, https://doi.org/10.1016/j.yexmp.2014.04.010
  17. Gastroprotective Effect of Selenium on Ethanol-Induced Gastric Damage in Rats vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13055740
  18. A potential therapeutic effect of CYP2C8 overexpression on anti-TNF-α activity vol.34, pp.3, 2014, https://doi.org/10.3892/ijmm.2014.1844
  19. KR-31543 reduces the production of proinflammatory molecules in human endothelial cells and monocytes and attenuates atherosclerosis in mouse model vol.44, pp.12, 2012, https://doi.org/10.3858/emm.2012.44.12.081
  20. Triglyceride (TG) down-regulates expression of MCP-1 and CCR2 in PMA-derived THP-1 macrophages vol.35, pp.1, 2013, https://doi.org/10.1007/s13258-013-0092-6
  21. Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages vol.388, pp.9, 2015, https://doi.org/10.1007/s00210-015-1124-3
  22. Oxyradical Stress, Endocannabinoids, and Atherosclerosis vol.3, pp.4, 2015, https://doi.org/10.3390/toxics3040481
  23. Nrf2and Cardiovascular Defense vol.2013, 2013, https://doi.org/10.1155/2013/104308
  24. Oxidative Stress: Dual Pathway Induction in Cardiorenal Syndrome Type 1 Pathogenesis vol.2015, 2015, https://doi.org/10.1155/2015/391790
  25. Caffeic acid phenethyl ester suppresses monocyte adhesion to the endothelium by inhibiting NF-κB/NOX2-derived ROS signaling vol.58, pp.3, 2016, https://doi.org/10.3164/jcbn.15-94
  26. Novel links among peroxiredoxins, endothelial dysfunction, and severity of atherosclerosis in type 2 diabetic patients with peripheral atherosclerotic disease vol.19, pp.2, 2014, https://doi.org/10.1007/s12192-013-0442-y
  27. Design, synthesis and biological evaluation of novel trimethylpyrazine-2-carbonyloxy-cinnamic acids as potent cardiovascular agents vol.5, pp.6, 2014, https://doi.org/10.1039/c4md00022f
  28. Sulfated polysaccharide fraction from marine algae Solieria filiformis : Structural characterization, gastroprotective and antioxidant effects vol.152, 2016, https://doi.org/10.1016/j.carbpol.2016.06.111
  29. The Influence ofNrf2on Cardiac Responses to Environmental Stressors vol.2013, 2013, https://doi.org/10.1155/2013/901239
  30. Coral-Derived Natural Marine Compound GB9 Impairs Vascular Development in Zebrafish vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081696
  31. Febuxostat, an Inhibitor of Xanthine Oxidase, Suppresses Lipopolysaccharide-Induced MCP-1 Production via MAPK Phosphatase-1-Mediated Inactivation of JNK vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0075527
  32. Hydrogen peroxide induces overexpression of angiotensin-converting enzyme in human umbilical vein endothelial cells vol.47, pp.2, 2013, https://doi.org/10.3109/10715762.2012.749987
  33. Antioxidant enzymes as redox-based biomarkers: a brief review vol.48, pp.4, 2015, https://doi.org/10.5483/BMBRep.2015.48.4.274
  34. Contrast agents for cardiovascular magnetic resonance imaging: an overview vol.5, pp.29, 2017, https://doi.org/10.1039/C7TB01241A
  35. Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis vol.234, pp.1, 2014, https://doi.org/10.1016/j.atherosclerosis.2014.02.014
  36. Metformin reduces the expression of NADPH oxidase and increases the expression of antioxidative enzymes in human monocytes/macrophages cultured in vitro vol.11, pp.3, 2016, https://doi.org/10.3892/etm.2016.2977
  37. Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice vol.38, pp.11, 2015, https://doi.org/10.1007/s12272-015-0579-6
  38. Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice vol.66, pp.3, 2014, https://doi.org/10.1111/jphp.12167
  39. Role of the NO/KATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice vol.23, pp.2, 2013, https://doi.org/10.1590/S0102-695X2013005000003
  40. Impact of SIN-1-derived peroxynitrite flux on endothelial cell redox homeostasis and bioenergetics: protective role of diphenyl diselenide via induction of peroxiredoxins vol.49, pp.2, 2015, https://doi.org/10.3109/10715762.2014.983096
  41. P2Y2R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production vol.69, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.01.022
  42. Myeloid Deletion of Nuclear Factor Erythroid 2−Related Factor 2 Increases Atherosclerosis and Liver Injury vol.32, pp.12, 2012, https://doi.org/10.1161/ATVBAHA.112.300345
  43. Current pharmacotherapies for atherosclerotic cardiovascular diseases pp.1976-3786, 2019, https://doi.org/10.1007/s12272-019-01116-1
  44. gene chip analysis vol.9, pp.7, 2019, https://doi.org/10.1039/C8RA10308A