참고문헌
- Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T. B., Ford, E., Furie, K., Gillespie, C., Go, A., Greenlund, K., Haase, N., Hailpern, S., Ho, P. M., Howard, V., Kissela, B., Kittner, S., Lackland, D., Lisabeth, L., Marelli, A., McDermott, M. M., Meigs, J., Mozaffarian, D., Mussolino, M., Nichol, G., Roger, V. L., Rosamond, W., Sacco, R., Sorlie, P., Stafford, R., Thom, T., Wasserthiel-Smoller, S., Wong, N. D. and Wylie-Rosett, J. (2010) Executive summary: heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 121, 948-954. https://doi.org/10.1161/CIRCULATIONAHA.109.192666
- Ross, R. (1999) Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 340, 115-126. https://doi.org/10.1056/NEJM199901143400207
- Libby, P. (2002) Inflammation in atherosclerosis. Nature 420, 868-874. https://doi.org/10.1038/nature01323
- Charo, I. F. and Taub, R. (2011) Anti-inflammatory therapeutics for the treatment of atherosclerosis. Nat. Rev. Drug. Discov. 10, 365-376. https://doi.org/10.1038/nrd3444
- Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y., Territo, M. C., Lusis, A. J., Shih, D. M., Van Lenten, B. J., Frank, J. S., Demer, L. L., Edwards, P. A. and Fogelman, A. M. (1996) The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16, 831-842. https://doi.org/10.1161/01.ATV.16.7.831
- Navab, M., Ananthramaiah, G. M., Reddy, S. T., Van Lenten, B. J., Ansell, B. J., Fonarow, G. C., Vahabzadeh, K., Hama, S., Hough, G., Kamranpour, N., Berliner, J. A., Lusis, A. J. and Fogelman, A. M. (2004) The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid. Res. 45, 993-1007. https://doi.org/10.1194/jlr.R400001-JLR200
- Vora, D. K., Fang, Z. T., Liva, S. M., Tyner, T. R., Parhami, F., Watson, A. D., Drake, T. A., Territo, M. C. and Berliner, J. A. (1997) Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ. Res. 80, 810-818. https://doi.org/10.1161/01.RES.80.6.810
- Takei, A., Huang, Y. and Lopes-Virella, M. F. (2001) Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis 154, 79-86. https://doi.org/10.1016/S0021-9150(00)00465-2
- Klouche, M., May, A. E., Hemmes, M., Messner, M., Kanse, S. M., Preissner, K. T. and Bhakdi, S. (1999) Enzymatically modified, nonoxidized LDL induces selective adhesion and transmigration of monocytes and T-lymphocytes through human endothelial cell monolayers. Arterioscler. Thromb. Vasc. Biol. 19, 784-793. https://doi.org/10.1161/01.ATV.19.3.784
- Khan, B. V., Parthasarathy, S. S., Alexander, R. W. and Medford, R. M. (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest. 95, 1262-1270. https://doi.org/10.1172/JCI117776
- Cushing, S. D., Berliner, J. A., Valente, A. J., Territo, M. C., Navab, M., Parhami, F., Gerrity, R., Schwartz, C. J. and Fogelman, A. M. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. U.S.A 87, 5134-5138. https://doi.org/10.1073/pnas.87.13.5134
- Rajavashisth, T. B., Andalibi, A., Territo, M. C., Berliner, J. A., Navab, M., Fogelman, A. M. and Lusis, A. J. (1990) Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254-257. https://doi.org/10.1038/344254a0
- Wittchen, E. S. (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front. Biosci. 14, 2522-2545.
- Lyons, T. J. (1993) Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am. J. Cardiol. 71, 26B-31B. https://doi.org/10.1016/0002-9149(93)90142-Y
- Shibata, N. and Glass, C. K. (2009) Regulation of macrophage function in inflammation and atherosclerosis. J. Lipid. Res. 50 Suppl, S277-281. https://doi.org/10.1194/jlr.R800063-JLR200
- Madamanchi, N. R., Vendrov, A. and Runge, M. S. (2005) Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 29-38.
- Glass, C. K. and Witztum, J. L. (2001) Atherosclerosis. the road ahead. Cell. 104, 503-516. https://doi.org/10.1016/S0092-8674(01)00238-0
- Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. and Mann, J. (1993) Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart. J. 69, 377-381. https://doi.org/10.1136/hrt.69.5.377
- Brandes, R. P. and Kreuzer, J. (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc. Res. 65, 16-27. https://doi.org/10.1016/j.cardiores.2004.08.007
- Cai, H. (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ. Res. 96, 818-822. https://doi.org/10.1161/01.RES.0000163631.07205.fb
- Hink, U., Li, H., Mollnau, H., Oelze, M., Matheis, E., Hartmann, M., Skatchkov, M., Thaiss, F., Stahl, R. A., Warnholtz, A., Meinertz, T., Griendling, K., Harrison, D. G., Forstermann, U. and Munzel, T. (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ. Res. 88, E14-22. https://doi.org/10.1161/01.RES.88.2.e14
- Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J. H., Skatchkov, M., Heitzer, T., Stasch, J. P., Griendling, K. K., Harrison, D. G., Bohm, M., Meinertz, T. and Munzel, T. (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99, 2027-2033. https://doi.org/10.1161/01.CIR.99.15.2027
- Li, H., Witte, K., August, M., Brausch, I., Godtel-Armbrust, U., Habermeier, A., Closs, E. I., Oelze, M., Munzel, T. and Forstermann, U. (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J. Am. Coll. Cardiol 47, 2536-2544. https://doi.org/10.1016/j.jacc.2006.01.071
- Forstermann, U. (2008) Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med. 5, 338-349. https://doi.org/10.1038/ncpcardio1211
- Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R. and Griendling, K. K. (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105, 1429-1435. https://doi.org/10.1161/01.CIR.0000012917.74432.66
- Barry-Lane, P. A., Patterson, C., van der Merwe, M., Hu, Z., Holland, S. M., Yeh, E. T. and Runge, M. S. (2001) p47phox is required for atherosclerotic lesion progression in ApoE(−/−) mice. J. Clin. Invest. 108, 1513-1522. https://doi.org/10.1172/JCI200111927
- Schroder, K., Vecchione, C., Jung, O., Schreiber, J. G., Shiri-Sverdlov, R., van Gorp, P. J., Busse, R. and Brandes, R. P. (2006) Xanthine oxidase inhibitor tungsten prevents the development of atherosclerosis in ApoE knockout mice fed a Western-type diet. Free. Radic. Biol. Med. 41, 1353-1360. https://doi.org/10.1016/j.freeradbiomed.2006.03.026
- Choi, J. H., Jeon, H. J., Park, J. G., Sonn, S. K., Lee, M. R., Lee, M. N., You, H. J., Kim, G. Y., Kim, J. H., Lee, M. H., Kwon, O. S., Nam, K. H., Kim, H. C., Jeong, T. S., Lee, W. S. and Oh, G. T. (2010) Anti-atherogenic effect of BHBTZD having inhibitory activities on cyclooxygenase and 5-lipoxygenase in hyperlipidemic mice. Atherosclerosis. 212, 146-152. https://doi.org/10.1016/j.atherosclerosis.2010.05.003
- Choi, J. H., Park, J. G., Jeon, H. J., Kim, M. S., Lee, M. R., Lee, M. N., Sonn, S., Kim, J. H., Lee, M. H., Choi, M. S., Park, Y. B., Kwon, O. S., Jeong, T. S., Lee, W. S., Shim, H. B., Shin, D. H. and Oh, G. T. (2011) HMB-TZD attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion. Exp. Mol. Med. (In press).
- Rhee, S. G., Chang, T. S., Bae, Y. S., Lee, S. R. and Kang, S. W. (2003) Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol. 14, S211-215. https://doi.org/10.1097/01.ASN.0000077404.45564.7E
- Wood, Z. A., Poole, L. B. and Karplus, P. A. (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
- Babior, B. M. (1999) NADPH oxidase: an update. Blood. 93, 1464-1476.
- Lambeth, J. D. (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr. Opin. Hematol. 9, 11-17. https://doi.org/10.1097/00062752-200201000-00003
- Cai, H. (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68, 26-36. https://doi.org/10.1016/j.cardiores.2005.06.021
- Hancock, J. T., Desikan, R. and Neill, S. J. (2001) Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29, 345-350. https://doi.org/10.1042/BST0290345
- Allen, R. G. and Tresini, M. (2000) Oxidative stress and gene regulation. Free. Radic. Biol. Med. 28, 463-499. https://doi.org/10.1016/S0891-5849(99)00242-7
- Kehrer, J. P. (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 149, 43-50. https://doi.org/10.1016/S0300-483X(00)00231-6
- Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K. and Finkel, T. (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296-299. https://doi.org/10.1126/science.270.5234.296
- Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B. and Rhee, S. G. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221. https://doi.org/10.1074/jbc.272.1.217
- Mahadev, K., Zilbering, A., Zhu, L. and Goldstein, B. J. (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938-21942. https://doi.org/10.1074/jbc.C100109200
- Meng, T. C., Fukada, T. and Tonks, N. K. (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell. 9, 387-399. https://doi.org/10.1016/S1097-2765(02)00445-8
- Ruiz-Gines, J. A., Lopez-Ongil, S., Gonzalez-Rubio, M., Gonzalez-Santiago, L., Rodriguez-Puyol, M. and Rodriguez- Puyol, D. (2000) Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J. Cardiovasc. Pharmacol. 35, 109-113. https://doi.org/10.1097/00005344-200001000-00014
- Zanetti, M., Katusic, Z. S. and O'Brien, T. (2002) Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am. J. Physiol. Heart. Circ. Physiol. 283, H2620-2626. https://doi.org/10.1152/ajpheart.00358.2001
- Faucher, K., Rabinovitch-Chable, H., Barriere, G., Cook- Moreau, J. and Rigaud, M. (2003) Overexpression of cytosolic glutathione peroxidase (GPX1) delays endothelial cell growth and increases resistance to toxic challenges. Biochimie. 85, 611-617. https://doi.org/10.1016/S0300-9084(03)00089-0
- Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J. and Galeotti, T. (2002) Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. J. Biol. Chem. 277, 3101-3108. https://doi.org/10.1074/jbc.M107711200
- Abe, J., Okuda, M., Huang, Q., Yoshizumi, M. and Berk, B. C. (2000) Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J. Biol. Chem. 275, 1739-1748. https://doi.org/10.1074/jbc.275.3.1739
- Wung, B. S., Cheng, J. J., Chao, Y. J., Hsieh, H. J. and Wang, D. L. (1999) Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response- 1 gene expression in endothelial cells. Circ. Res. 84, 804-812. https://doi.org/10.1161/01.RES.84.7.804
- Zembowicz, A., Hatchett, R. J., Jakubowski, A. M. and Gryglewski, R. J. (1993) Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Br. J. Pharmacol. 110, 151-158. https://doi.org/10.1111/j.1476-5381.1993.tb13785.x
- Yang, Z., Zhang, A., Altura, B. T. and Altura, B. M. (1999) Hydrogen peroxide-induced endothelium-dependent relaxation of rat aorta involvement of Ca2+ and other cellular metabolites. Gen. Pharmacol. 33, 325-336. https://doi.org/10.1016/S0306-3623(99)00019-1
- Cominacini, L., Pasini, A. F., Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A., Pastorino, A. M., Lo Cascio, V. and Sawamura, T. (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633-12638. https://doi.org/10.1074/jbc.275.17.12633
- Chen, M., Masaki, T. and Sawamura, T. (2002) LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 95, 89-100. https://doi.org/10.1016/S0163-7258(02)00236-X
- Manna, S. K., Zhang, H. J., Yan, T., Oberley, L. W. and Aggarwal, B. B. (1998) Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J. Biol. Chem. 273, 13245-13254. https://doi.org/10.1074/jbc.273.21.13245
- Muller, J. M., Rupec, R. A. and Baeuerle, P. A. (1997) Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates. Methods. 11, 301-312. https://doi.org/10.1006/meth.1996.0424
- Yoon, J. J., Lee, Y. J., Kim, J. S., Kang, D. G. and Lee, H. S. (2010) Protective role of betulinic acid on TNF-alpha-induced cell adhesion molecules in vascular endothelial cells. Biochem. Biophys. Res. Commun. 391, 96-101. https://doi.org/10.1016/j.bbrc.2009.11.009
- Yoshizumi, M., Fujita, Y., Izawa, Y., Suzaki, Y., Kyaw, M., Ali, N., Tsuchiya, K., Kagami, S., Yano, S., Sone, S. and Tamaki, T. (2004) Ebselen inhibits tumor necrosis factor- alpha-induced c-Jun N-terminal kinase activation and adhesion molecule expression in endothelial cells. Exp. Cell. Res. 292, 1-10. https://doi.org/10.1016/j.yexcr.2003.08.003
- Park, J. G., Yoo, J. Y., Jeong, S. J., Choi, J. H., Lee, M. R., Lee, M. N., Lee, J. H., Kim, H. C., Jo, H., Yu, D. Y., Kang, S. W., Rhee, S. G., Lee, M. H. and Oh, G. T. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Cir. Res. (In press).
- Silverstein, R. L., Li, W., Park, Y. M. and Rahaman, S. O. (2010) Mechanisms of cell signaling by the scavenger receptor CD36: implications in atherosclerosis and thrombosis. Trans. Am. Clin. Climatol. Assoc. 121, 206-220.
- Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., Halle, A., Rayner, K. J., Boyer, L., Zhong, R., Frazier, W. A., Lacy-Hulbert, A., El Khoury, J., Golenbock, D. T. and Moore, K. J. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155-161. https://doi.org/10.1038/ni.1836
- Miller, Y. I., Viriyakosol, S., Binder, C. J., Feramisco, J. R., Kirkland, T. N. and Witztum, J. L. (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561-1568. https://doi.org/10.1074/jbc.M209634200
- Miller, Y. I., Viriyakosol, S., Worrall, D. S., Boullier, A., Butler, S. and Witztum, J. L. (2005) Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25, 1213-1219. https://doi.org/10.1161/01.ATV.0000159891.73193.31
- Bae, Y. S., Lee, J. H., Choi, S. H., Kim, S., Almazan, F., Witztum, J. L. and Miller, Y. I. (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210-218. https://doi.org/10.1161/CIRCRESAHA.108.181040
- Kamata, H. and Hirata, H. (1999) Redox regulation of cellular signalling. Cell. Signal. 11, 1-14. https://doi.org/10.1016/S0898-6568(98)00037-0
- Forman, H. J. and Torres, M. (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care. Med. 166, S4-8. https://doi.org/10.1164/rccm.2206007
- Rhee, J. W., Lee, K. W., Kim, D., Lee, Y., Jeon, O. H., Kwon, H. J. and Kim, D. S. (2007) NF-kappaB-dependent regulation of matrix metalloproteinase-9 gene expression by lipopolysaccharide in a macrophage cell line RAW 264.7. J. Biochem. Mol. Biol. 40, 88-94. https://doi.org/10.5483/BMBRep.2007.40.1.088
- Han, K. Y., Kwon, T. H., Lee, T. H., Lee, S. J., Kim, S. H. and Kim, J. (2008) Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells. BMB Rep. 41, 328-333. https://doi.org/10.5483/BMBRep.2008.41.4.328
- Abate, C., Patel, L., Rauscher, F. J., 3rd and Curran, T. (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science. 249, 1157-1161. https://doi.org/10.1126/science.2118682
- Ogawa, S., Lozach, J., Benner, C., Pascual, G., Tangirala, R. K., Westin, S., Hoffmann, A., Subramaniam, S., David, M., Rosenfeld, M. G. and Glass, C. K. (2005) Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707-721. https://doi.org/10.1016/j.cell.2005.06.029
- Roebuck, K. A., Carpenter, L. R., Lakshminarayanan, V., Page, S. M., Moy, J. N. and Thomas, L. L. (1999) Stimulusspecific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J. Leukoc. Biol. 65, 291-298. https://doi.org/10.1002/jlb.65.3.291
- Taniyama, Y. and Griendling, K. K. (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42, 1075-1081. https://doi.org/10.1161/01.HYP.0000100443.09293.4F
- Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., Kazlauskas, A. and Rhee, S. G. (2000) Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 10527-10531. https://doi.org/10.1074/jbc.275.14.10527
- Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., Park, H. S., Kim, K. Y., Lee, J. S., Choi, C., Bae, Y. S., Lee, B. I., Rhee, S. G. and Kang, S. W. (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347-353. https://doi.org/10.1038/nature03587
- Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T. and Griendling, K. K. (2004) Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species- dependent regulation of platelet-derived growth factor- induced smooth muscle cell migration. Circ. Res. 94, 1219-1226. https://doi.org/10.1161/01.RES.0000126848.54740.4A
- Rudijanto, A. (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta. Med. Indones 39, 86-93.
- Grote, K., Flach, I., Luchtefeld, M., Akin, E., Holland, S. M., Drexler, H. and Schieffer, B. (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ. Res. 92, e80-86. https://doi.org/10.1161/01.RES.0000077044.60138.7C
- Rajagopalan, S., Meng, X. P., Ramasamy, S., Harrison, D. G. and Galis, Z. S. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572-2579. https://doi.org/10.1172/JCI119076
- De Keulenaer, G. W., Ushio-Fukai, M., Yin, Q., Chung, A. B., Lyons, P. R., Ishizaka, N., Rengarajan, K., Taylor, W. R., Alexander, R. W. and Griendling, K. K. (2000) Convergence of redox-sensitive and mitogen-activated protein kinase signaling pathways in tumor necrosis factor-alphamediated monocyte chemoattractant protein-1 induction in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 20, 385-391. https://doi.org/10.1161/01.ATV.20.2.385
- von Harsdorf, R., Li, P. F. and Dietz, R. (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99, 2934-2941. https://doi.org/10.1161/01.CIR.99.22.2934
- Chelikani, P., Fita, I. and Loewen, P. C. (2004) Diversity of structures and properties among catalases. Cell. Mol. Life. Sci. 61, 192-208. https://doi.org/10.1007/s00018-003-3206-5
- Yang, H., Roberts, L. J., Shi, M. J., Zhou, L. C., Ballard, B. R., Richardson, A. and Guo, Z. M. (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ. Res. 95, 1075-1081. https://doi.org/10.1161/01.RES.0000149564.49410.0d
- Lin, S. J., Shyue, S. K., Shih, M. C., Chu, T. H., Chen, Y. H., Ku, H. H., Chen, J. W., Tam, K. B. and Chen, Y. L. (2007) Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen- activated protein kinases, and transcription factors. Atherosclerosis. 190, 124-134. https://doi.org/10.1016/j.atherosclerosis.2006.02.044
- Margis, R., Dunand, C., Teixeira, F. K. and Margis-Pinheiro, M. (2008) Glutathione peroxidase family - an evolutionary overview. FEBS J 275, 3959-3970. https://doi.org/10.1111/j.1742-4658.2008.06542.x
- Wagner, A. H., Kautz, O., Fricke, K., Zerr-Fouineau, M., Demicheva, E., Guldenzoph, B., Bermejo, J. L., Korff, T. and Hecker, M. (2009) Upregulation of glutathione peroxidase offsets stretch-induced proatherogenic gene expression in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 29, 1894-1901. https://doi.org/10.1161/ATVBAHA.109.194738
- Torzewski, M., Ochsenhirt, V., Kleschyov, A. L., Oelze, M., Daiber, A., Li, H., Rossmann, H., Tsimikas, S., Reifenberg, K., Cheng, F., Lehr, H. A., Blankenberg, S., Forstermann, U., Munzel, T. and Lackner, K. J. (2007) Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 850-857. https://doi.org/10.1161/01.ATV.0000258809.47285.07
- Lewis, P., Stefanovic, N., Pete, J., Calkin, A. C., Giunti, S., Thallas-Bonke, V., Jandeleit-Dahm, K. A., Allen, T. J., Kola, I., Cooper, M. E. and de Haan, J. B. (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115, 2178-2187. https://doi.org/10.1161/CIRCULATIONAHA.106.664250
- Blankenberg, S., Rupprecht, H. J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J. and Lackner, K. J. (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605-1613. https://doi.org/10.1056/NEJMoa030535
- Loeper, J., Goy, J., Rozensztajn, L., Bedu, O. and Moisson, P. (1991) Lipid peroxidation and protective enzymes during myocardial infarction. Clin. Chim. Acta. 196, 119-125. https://doi.org/10.1016/0009-8981(91)90064-J
- Espinola-Klein, C., Rupprecht, H. J., Bickel, C., Schnabel, R., Genth-Zotz, S., Torzewski, M., Lackner, K., Munzel, T. and Blankenberg, S. (2007) Glutathione peroxidase-1 activity, atherosclerotic burden, and cardiovascular prognosis. Am. J. Cardiol. 99, 808-812. https://doi.org/10.1016/j.amjcard.2006.10.041
- Guo, Z., Ran, Q., Roberts, L. J., 2nd, Zhou, L., Richardson, A., Sharan, C., Wu, D. and Yang, H. (2008) Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free. Radic. Biol. Med. 44, 343-352. https://doi.org/10.1016/j.freeradbiomed.2007.09.009
- Chae, H. Z., Kim, H. J., Kang, S. W. and Rhee, S. G. (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes. Res. Clin. Pract. 45, 101-112. https://doi.org/10.1016/S0168-8227(99)00037-6
- Wang, X., Phelan, S. A., Petros, C., Taylor, E. F., Ledinski, G., Jurgens, G., Forsman-Semb, K. and Paigen, B. (2004) Peroxiredoxin 6 deficiency and atherosclerosis susceptibility in mice: significance of genetic background for assessing atherosclerosis. Atherosclerosis. 177, 61-70. https://doi.org/10.1016/j.atherosclerosis.2004.06.007
- Rhee, S. G., Chae, H. Z. and Kim, K. (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free. Radic. Biol. Med. 38, 1543-1552. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Conway, J. P. and Kinter, M. (2006) Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281, 27991-28001. https://doi.org/10.1074/jbc.M605026200
- Mowbray, A. L., Kang, D. H., Rhee, S. G., Kang, S. W. and Jo, H. (2008) Laminar shear stress up-regulates peroxiredoxins (PRX) in endothelial cells: PRX 1 as a mechanosensitive antioxidant. J. Biol. Chem. 283, 1622-1627. https://doi.org/10.1074/jbc.M707985200
- Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Van Etten, R. A., Krieger, M. and Wagner, D. D. (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ. Res. 103, 598-605. https://doi.org/10.1161/CIRCRESAHA.108.174870
- Rhee, S. G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882-1883. https://doi.org/10.1126/science.1130481
- Moon, E. Y., Noh, Y. W., Han, Y. H., Kim, S. U., Kim, J. M., Yu, D. Y. and Lim, J. S. (2006) T lymphocytes and dendritic cells are activated by the deletion of peroxiredoxin II (Prx II) gene. Immunol. Lett. 102, 184-190. https://doi.org/10.1016/j.imlet.2005.09.003
- Yang, C. S., Lee, D. S., Song, C. H., An, S. J., Li, S., Kim, J. M., Kim, C. S., Yoo, D. G., Jeon, B. H., Yang, H. Y., Lee, T. H., Lee, Z. W., El-Benna, J., Yu, D. Y. and Jo, E. K. (2007) Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin- induced lethal shock. J. Exp. Med. 204, 583-594. https://doi.org/10.1084/jem.20061849
- Martinez-Pinna, R., Ramos-Mozo, P., Madrigal-Matute, J., Blanco-Colio, L. M., Lopez, J. A., Calvo, E., Camafeita, E., Lindholt, J. S., Meilhac, O., Delbosc, S., Michel, J. B., de Ceniga, M. V., Egido, J. and Martin-Ventura, J. L. (2011) Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 31, 935-943. https://doi.org/10.1161/ATVBAHA.110.214429
- Urbonavicius, S., Lindholt, J. S., Vorum, H., Urbonaviciene, G., Henneberg, E. W. and Honore, B. (2009) Proteomic identification of differentially expressed proteins in aortic wall of patients with ruptured and nonruptured abdominal aortic aneurysms. J. Vasc. Surg. 49, 455-463. https://doi.org/10.1016/j.jvs.2008.08.097
- Chew, P., Yuen, D. Y., Koh, P., Stefanovic, N., Febbraio, M. A., Kola, I., Cooper, M. E. and de Haan, J. B. (2009) Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 29, 823-830. https://doi.org/10.1161/ATVBAHA.109.186619
- Kim, J., Nam, K. H., Kim, S. O., Choi, J. H., Kim, H. C., Yang, S. D., Kang, J. H., Ryu, Y. H., Oh, G. T. and Yoo, S. E. (2004) KR-31378 ameliorates atherosclerosis by blocking monocyte recruitment in hypercholestrolemic mice. FASEB J. 18, 714-716. https://doi.org/10.1096/fj.03-0652fje
- Nam, K. H., Choi, J. H., Seo, Y. J., Lee, Y. M., Won, Y. S., Lee, M. R., Lee, M. N., Park, J. G., Kim, Y. M., Kim, H. C., Lee, C. H., Lee, H. K., Oh, S. R. and Oh, G. T. (2006) Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp. Mol. Med. 38, 445-452. https://doi.org/10.1038/emm.2006.52
- Steinhubl, S. R. (2008) Why have antioxidants failed in clinical trials? Am. J. Cardiol. 101, 14D-19D.
피인용 문헌
- The protective effect of North Schisandra Lignans on vascular endothelial cell oxidation injuries vol.24, pp.s2, 2016, https://doi.org/10.3233/THC-161192
- Luteolin Suppresses the Differentiation of THP-1 Cells through the Inhibition of NOX2 mRNA Expression and the Membrane Translocation of p47phox vol.76, pp.7, 2013, https://doi.org/10.1021/np400224w
- Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases vol.31, pp.1, 2014, https://doi.org/10.1039/C3NP70065H
- Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.082
- VPO1 Mediates ApoE Oxidation and Impairs the Clearance of Plasma Lipids vol.8, pp.2, 2013, https://doi.org/10.1371/journal.pone.0057571
- Metformin affects macrophages’ phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages vol.66, pp.3, 2014, https://doi.org/10.1016/j.pharep.2013.11.008
- Serum Oxidant and Antioxidant Status in Adolescents Undergoing Professional Endurance Sports Training vol.2012, 2012, https://doi.org/10.1155/2012/741239
- CML/RAGE signal induces calcification cascade in diabetes vol.8, pp.1, 2016, https://doi.org/10.1186/s13098-016-0196-7
- Translocator Protein (18 kDa): A Promising Therapeutic Target and Diagnostic Tool for Cardiovascular Diseases vol.2012, 2012, https://doi.org/10.1155/2012/162934
- Prdx1-encoded peroxiredoxin is important for vascular development in zebrafish vol.591, pp.6, 2017, https://doi.org/10.1002/1873-3468.12604
- Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase vol.45, pp.7, 2012, https://doi.org/10.5483/BMBRep.2012.45.7.088
- Oxidative modification of ferritin induced by methylglyoxal vol.45, pp.3, 2012, https://doi.org/10.5483/BMBRep.2012.45.3.147
- Curcuminoids Modulate the PKCδ/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte–Macrophage Differentiation vol.63, pp.40, 2015, https://doi.org/10.1021/acs.jafc.5b04083
- In Vitro Activity-Guided Identification of Antioxidants in Aged Garlic Extract vol.61, pp.12, 2013, https://doi.org/10.1021/jf305549g
- The protective effect of Prunella vulgaris ethanol extract against vascular inflammation in TNF-α-stimulated human aortic smooth muscle cells vol.46, pp.7, 2013, https://doi.org/10.5483/BMBRep.2013.46.7.214
- The HIF1A rs2057482 polymorphism is associated with risk of developing premature coronary artery disease and with some metabolic and cardiovascular risk factors. The Genetics of Atherosclerotic Disease (GEA) Mexican Study vol.96, pp.3, 2014, https://doi.org/10.1016/j.yexmp.2014.04.010
- Gastroprotective Effect of Selenium on Ethanol-Induced Gastric Damage in Rats vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13055740
- A potential therapeutic effect of CYP2C8 overexpression on anti-TNF-α activity vol.34, pp.3, 2014, https://doi.org/10.3892/ijmm.2014.1844
- KR-31543 reduces the production of proinflammatory molecules in human endothelial cells and monocytes and attenuates atherosclerosis in mouse model vol.44, pp.12, 2012, https://doi.org/10.3858/emm.2012.44.12.081
- Triglyceride (TG) down-regulates expression of MCP-1 and CCR2 in PMA-derived THP-1 macrophages vol.35, pp.1, 2013, https://doi.org/10.1007/s13258-013-0092-6
- Exenatide (a GLP-1 agonist) improves the antioxidative potential of in vitro cultured human monocytes/macrophages vol.388, pp.9, 2015, https://doi.org/10.1007/s00210-015-1124-3
- Oxyradical Stress, Endocannabinoids, and Atherosclerosis vol.3, pp.4, 2015, https://doi.org/10.3390/toxics3040481
- Nrf2and Cardiovascular Defense vol.2013, 2013, https://doi.org/10.1155/2013/104308
- Oxidative Stress: Dual Pathway Induction in Cardiorenal Syndrome Type 1 Pathogenesis vol.2015, 2015, https://doi.org/10.1155/2015/391790
- Caffeic acid phenethyl ester suppresses monocyte adhesion to the endothelium by inhibiting NF-κB/NOX2-derived ROS signaling vol.58, pp.3, 2016, https://doi.org/10.3164/jcbn.15-94
- Novel links among peroxiredoxins, endothelial dysfunction, and severity of atherosclerosis in type 2 diabetic patients with peripheral atherosclerotic disease vol.19, pp.2, 2014, https://doi.org/10.1007/s12192-013-0442-y
- Design, synthesis and biological evaluation of novel trimethylpyrazine-2-carbonyloxy-cinnamic acids as potent cardiovascular agents vol.5, pp.6, 2014, https://doi.org/10.1039/c4md00022f
- Sulfated polysaccharide fraction from marine algae Solieria filiformis : Structural characterization, gastroprotective and antioxidant effects vol.152, 2016, https://doi.org/10.1016/j.carbpol.2016.06.111
- The Influence ofNrf2on Cardiac Responses to Environmental Stressors vol.2013, 2013, https://doi.org/10.1155/2013/901239
- Coral-Derived Natural Marine Compound GB9 Impairs Vascular Development in Zebrafish vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081696
- Febuxostat, an Inhibitor of Xanthine Oxidase, Suppresses Lipopolysaccharide-Induced MCP-1 Production via MAPK Phosphatase-1-Mediated Inactivation of JNK vol.8, pp.9, 2013, https://doi.org/10.1371/journal.pone.0075527
- Hydrogen peroxide induces overexpression of angiotensin-converting enzyme in human umbilical vein endothelial cells vol.47, pp.2, 2013, https://doi.org/10.3109/10715762.2012.749987
- Antioxidant enzymes as redox-based biomarkers: a brief review vol.48, pp.4, 2015, https://doi.org/10.5483/BMBRep.2015.48.4.274
- Contrast agents for cardiovascular magnetic resonance imaging: an overview vol.5, pp.29, 2017, https://doi.org/10.1039/C7TB01241A
- Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis vol.234, pp.1, 2014, https://doi.org/10.1016/j.atherosclerosis.2014.02.014
- Metformin reduces the expression of NADPH oxidase and increases the expression of antioxidative enzymes in human monocytes/macrophages cultured in vitro vol.11, pp.3, 2016, https://doi.org/10.3892/etm.2016.2977
- Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice vol.38, pp.11, 2015, https://doi.org/10.1007/s12272-015-0579-6
- Diphenyl diselenide differently modulates cardiovascular redox responses in young adult and middle-aged low-density lipoprotein receptor knockout hypercholesterolemic mice vol.66, pp.3, 2014, https://doi.org/10.1111/jphp.12167
- Role of the NO/KATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice vol.23, pp.2, 2013, https://doi.org/10.1590/S0102-695X2013005000003
- Impact of SIN-1-derived peroxynitrite flux on endothelial cell redox homeostasis and bioenergetics: protective role of diphenyl diselenide via induction of peroxiredoxins vol.49, pp.2, 2015, https://doi.org/10.3109/10715762.2014.983096
- P2Y2R activation by nucleotides released from oxLDL-treated endothelial cells (ECs) mediates the interaction between ECs and immune cells through RAGE expression and reactive oxygen species production vol.69, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.01.022
- Myeloid Deletion of Nuclear Factor Erythroid 2−Related Factor 2 Increases Atherosclerosis and Liver Injury vol.32, pp.12, 2012, https://doi.org/10.1161/ATVBAHA.112.300345
- Current pharmacotherapies for atherosclerotic cardiovascular diseases pp.1976-3786, 2019, https://doi.org/10.1007/s12272-019-01116-1
- gene chip analysis vol.9, pp.7, 2019, https://doi.org/10.1039/C8RA10308A