DOI QR코드

DOI QR Code

Exchange Bias Field and Coercivity of [NiFe/NiFeCuMo/NiFe]/FeMn Multilayers

[NiFe/NiFeCuMo/NiFe]/FeMn 다층박막의 교환결합력과 보자력에 관한 특성 연구

  • Choi, Jong-Gu (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University) ;
  • Lee, Sang-Suk (Dept. of Eastern-western Biomedical Engineering, Graduation, Sangji University)
  • 최종구 (상지대학교 대학원 동서의료공학과) ;
  • 이상석 (상지대학교 대학원 동서의료공학과)
  • Received : 2011.06.01
  • Accepted : 2011.07.20
  • Published : 2011.08.31

Abstract

The exchange bias field ($H_{EX}$) and the coercivity ($H_C$) variation and change depending on the thickness of intermediately super-soft magnetic NiFeCuMo layer with different thickness of the bottom NiFe layer were investigated. The $H_{EX}$ of triple pinned NiFe(4 nm)/NiFeCuMo($t_{NiFeCuMo}$= 1 nm)/NiFe(4 nm)/FeMn multilayer has the maximum value more less than one of single pinned NiFe(8 nm)/FeMn layer. If NiFeCuMo layer is inserted each into between the pinned and free NiFe layers, we can be used as GMR-SV device for a bio-sensor that has improved magnetic sensitivity.

초연자성을 갖는 코네틱(NiFeCuMo) 박막을 NiFe 박막 사이에 삽입한 삼층박막 위에 반강자성체 FeMn을 증착한 다층박막에서 NiFe와 NiFeCuMo 박막의 두께에 따른 교환결합력과 보자력에 관한 특성을 조사하였다. 특히 NiFeCuMo 박막의 두께가 1 nm일 때 NiFe 박막 사이에 삽입한 삼층박막 위에 반강자성체 FeMn을 증착한 다층박막의 교환결합력은 최댓값을 나타내었다. 고정층과 자유층에 각각 NiFeCuMo 박막을 삽입하여 초연자성의 바이오센서용 거대자기저항-스핀밸브(giant magnetoresistive-spin valves; GMR-SV) 소자를 개발할 수 있는 가능성을 보여주었다.

Keywords

References

  1. F. E. Luborsky, P. G. Frischmann, and L. A. Johnson, J. Magn. Magn. Mater. 19, 103 (1980).
  2. M. Hayakawa, J. Magn. Magn. Mater. 134, 287 (1994). https://doi.org/10.1016/0304-8853(94)00149-9
  3. P. Sharma and A. Gupta, J. Magn. Magn. Mater. 288, 347 (2005). https://doi.org/10.1016/j.jmmm.2004.09.119
  4. J. G. Choi, D. G. Hwang, S. S. Lee, J. H. Choi, K A. Lee, and J. R. Rhee, J. Kor. Magn. Soc. 19, 197 (2009). https://doi.org/10.4283/JKMS.2009.19.6.197
  5. J. G. Choi, D. G. Hwang, S. S. Lee, and J. R. Rhee, J. Kor. Magn. Soc. 19, 142 (2009). https://doi.org/10.4283/JKMS.2009.19.4.142
  6. J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, J. Magn. Magn. Mater. 322, 2191 (2010). https://doi.org/10.1016/j.jmmm.2010.02.008
  7. W. F. Egelhoff Jr., R. D. McMichael, C. L. Dennis, M. D. Stiles, F. Johnson, A. J. Shapiro, B. B. Maranville, and C. J. Popwell, Thin Solid Films 505, 90 (2006). https://doi.org/10.1016/j.tsf.2005.10.014
  8. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018
  9. S. S. Lee, B. Y. Kim, J. Y. Lee, D. G. Hwang, S. W. Kim, M. Y. Kim, J. Y. Hwang, and J. R. Rhee, J. Appl. Phys. 95, 7525 (2004). https://doi.org/10.1063/1.1676035
  10. J. G. Choi and S. S. Lee, J. Kor. Magn. Soc. 20, 129 (2010). https://doi.org/10.4283/JKMS.2010.20.4.129
  11. J. G. Choi, D. G. Hwang, J. R. Rhee, and S. S. Lee, Thin Solid Films, In Press (2011).
  12. D. W. Kim, J. H. Lee, M. J. Kim, and S. S. Lee, J. Magnetics 14, 80 (2009). https://doi.org/10.4283/JMAG.2009.14.2.080
  13. W. H. Lee, D. G. Hwang, and S. S. Lee, J. Magnetics 14, 18 (2009). https://doi.org/10.4283/JMAG.2009.14.1.018