DOI QR코드

DOI QR Code

치환형 Ferrite (Fe-Al-Ga-Si)의 특성 연구

A Study on the Properties of Substituted Ferrite (Fe-Al-Ga-Si)

  • 최승한 (대구한의대학교 한방의료공학과)
  • Choi, Seung-Han (Department of Oriental Biomedical Engineering, Daegu Haany University)
  • 투고 : 2011.07.17
  • 심사 : 2011.07.27
  • 발행 : 2011.08.27

초록

The crystal structure and magnetic properties of a new solid solution type ferrite $(Fe_2O_3)_5-(Al_2O_3)_{3.4}-(Ga_2O_3)_{0.6}-SiO$ were investigated using X-ray diffraction and M$\"{o}$ssbauer spectroscopy. The results of the X-ray diffraction pattern indicated that the crystal structure of the sample appears to be a cubic spinel type structure. The lattice constant (a = 8.317 ${\AA}$) decreases slightly with the substitution of $Ga_2O_3$ even though the ionic radii of the Ga ions are larger than that of the Al ions. The results can be attributed to a higher degree of covalency in the Ga-O bonds than in the Al-O and Fe-O bonds, which can also be explained using the observed M$\"{o}$ssbauer parameters, which are the magnetic hyperfine field, isomer shift, and quadrupole splitting. The drastic change in the magnetic structure according to the Ga ion substitution in the $ (Fe_2O_3)_5(Al_2O_3)_{4-x}(Ga_2O_3)_xSiO$ system and the low temperature variation have been studied through a M$\"{o}$ssbauer spectroscopy. The M$\"{o}$ssbauer spectrum at room temperature shows the superpositions of two Zeeman patterns and a strong doublet. It shows significant departures from the prototypical ferrite and is comparable with the diluted ferrite. The doublet of spectrum at room temperature appears to originate from superparamagnetic clusters and also the asymmetry of the doublet appears to be caused by the preferred orientation of the crystallites. The M$\"{o}$ssbauer spectra below room temperature show various complicated patterns, which can be explained by the freezing of the superparamagnetic clusters. On cooling, the magnetic states of the sample were various and multi critical.

키워드

참고문헌

  1. S. Krupicka and P. Novak, Ferromagnetic Material - Vol. 3, p. 189-304, ed. E. P. Wohlfarth, North-Holland publishing Co., Amsterdam, Holland (1982). doi:10.1016/S1574-9304(05)80090-2.
  2. Alex Goldman, Modern Ferrite Technology, p88, Van Nostrand Reinhold, New York, USA (1990).
  3. B. D. Cullity, Introduction to Magnetic Materials, p181- 182, Addison-Wesley Publishing Co., Reading, USA (1972).
  4. A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem., 29(11), 2701 (1967). https://doi.org/10.1016/0022-1902(67)80008-3
  5. S. H. Choi, Y. B. Lee, Kor. J. Mater. Res., 13(1), 48 (2003). (in Korean) https://doi.org/10.3740/MRSK.2003.13.1.048
  6. O. T. Sorensen, Nonstoichiometric Oxides, p. 60, Academic Press, New York, USA (1981).
  7. C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, p. 208-263, Cambridge Univ. Press, Cambridge, UK (1986).
  8. S. H. Choi, Kor. J. Mater. Res., 9(7), 701 (1999).
  9. D. Fiorani, S. Viticoli, J. L. Dormann, J. L. Tholence and A. P. Murani, Phys. Rev. B, 30(5), 2776 (1984). https://doi.org/10.1103/PhysRevB.30.2776
  10. J. M. Daniels and A. Rosencwaig, Can. J. Phys., 48(4), 381 (1970). https://doi.org/10.1139/p70-054
  11. Y. Ishikawa, J. Appl. Phys., 35(3), 1054 (1964). https://doi.org/10.1063/1.1713376
  12. A. Saifi, J. L. Dormann, D. Fiorani, P. Renaudin and J. Jove, J. Phys. C Solid State Phys., 21(30), 5295 (1988). https://doi.org/10.1088/0022-3719/21/30/015
  13. K. Muraleedharan, J. K. Srivastava, V. R. Marathe, R. Vijayaraghavan, J. A. Kulkarni and V. S. Darsane, Solid State Comm., 55(4), 363 (1985). https://doi.org/10.1016/0038-1098(85)90624-6
  14. J. Hammann, D. Fiorani, M. El. Yamani and J. L. Dormann, J. Phys. C Solid State Phys., 19(33), 6635 (1986). https://doi.org/10.1088/0022-3719/19/33/012
  15. A. Khater, J. Ferre and P. Meyer, J. Phys. C Solid State Phys., 20(12), 1857 (1987). https://doi.org/10.1088/0022-3719/20/12/013
  16. J. L. Dormann, L. Bessais and D. Fiorani, J. Phys. C Solid State Phys., 21(10), 2015 (1988). https://doi.org/10.1088/0022-3719/21/10/019
  17. J. K. Srivastava and G. Jehanno, J. Phys. Soc. Jpn., 56(3), 1252 (1987). https://doi.org/10.1143/JPSJ.56.1252
  18. I. S. Lyubutin, T. V. Dmitrieva and R. I. Chalabov, Hyperfine Interact., 59(3), 329 (1990). https://doi.org/10.1007/BF02401240