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Abstract

We investigate the latent stage-sequential patterns of drinking behaviors of U.S. adolescents who have started

to drink by age 14 years (seven years before the legal drinking age). A multiple-group latent transition anal-

ysis(LTA) with logistic regression is employed to identify the subsequent patterns of drinking behaviors

among early-onset drinkers. A sample of 1407 early-onset adolescents from the National Longitudinal Sur-

vey of Youth(NLSY97) is analyzed using maximum-likelihood estimation. The analysis demonstrates that

early-onset adolescents’ drinking behaviors can be represented by four latent classes and their prevalence

and transition are influenced by demographic factors of gender, age, and race.

Keywords: Latent stage-sequential process, latent transition analysis, maximum likelihood, under-age

drinking.

1. Introduction

According to the 2009 Youth Risk Behavior Survey(YRBS), a national survey of the United States

(U.S.), 21% of high school students began to drink alcohol before the age of 13 (Centers for Disease

Control and Prevention, 2010). This very early-onset drinking has been a well-known risk factor for

health and well-being among adolescents between the ages of 12 and 20. Indeed, numerous studies

have found that early-onset drinking is linked to a variety of other risky behaviors that have adverse

health consequences. For example, the earlier a youth begins to drink, the more likely it is that

the youth will at some point have unintentional injuries (Hingson et al., 2000), drive after drinking

(Lynskey et al., 2007), and engage in physical fights (Hingson et al., 2001).

Recently, the idea of latent stage-sequential process has motivated numerous studies on the initi-

ation and progression of alcohol use, since prevention scientists are able to find the intervals that

provide the best opportunities to slow the process of alcohol dependence. The current study inves-

tigates the latent stage-sequential process of drinking behaviors among U.S. adolescents who have
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started to drink by age 14 years. We employ a multiple-group latent transition analysis(LTA) with

logistic regression. The LTA has been derived from the family of latent class analysis(LCA) (Clogg

and Goodman, 1984; Goodman, 1974), where the measurement model at each time point is speci-

fied with an LCA, and stage-sequential process can be summarized by the transition probabilities

among latent classes over time. The multiple-group LTA estimates the group-specific probability of

belonging to any of hypothesized latent classes at each time point. In addition, the model estimates

the group-specific transition rates among latent classes over successive measurement occasions. A

transition among latent classes is typically represented with a first-order Markov chain, on the

assumption that class membership at time t depends only on class membership at time t− 1.

We provide detailed explanation of a maximum-likelihood(ML) estimation method via Expectation-

Maximization(EM) algorithm (Dempster et al., 1977). In terms of demonstration, we suggest some

speculative interpretations from the proposed LTA based on substantive findings using data from

the National Longitudinal Survey of Youth 1997 (NLSY97, http://www.bls.gov/nls/nlsy97.htm).

The organization of the rest is as follows. We introduce the LTA and provide estimation strategies

using the ML method in Section 2. In Section 3 we apply an LTA to alcohol drinking items drawn

from the NLSY97 to assess stage-sequential process of alcohol use among early-onset drinkers. In

Section 4 we discuss the advantages and limitations of an LTA application and conclude the paper.

2. Latent Transition Analysis and EM Algorithm

2.1. Model

Suppose we construct a multiple-group LTA model with C classes from a set ofM items over T time

periods. The group variable Gi represents the group membership for the ith individual ranging from

1 to G, and Ci = (Ci1, . . . , CiT ) denotes a vector of the latent class membership variable for the

ith individual from initial time t = 1 to time T , where variable Cit takes possible values 1, . . . , C.

Let yit = (yi1t, . . . , yiMt)
′ be a vector of discrete responses to M items given by the ith individual.

These item responses are used to measure latent class membership at time t, where each yimt can

take values from 1 to rm for m = 1, . . . ,M . Further, let xit = (xi1t, . . . , xiptt)
′, measured at time

t, denote a pt × 1 vector of covariates for individual i that may influence class prevalence at time t.

The probability that the ith subject provides responses yi = (yi1, . . . ,yiT ) conditioned on Gi = g

and (xi1, . . . ,xiT ) can be obtained by marginalizing the joint probability of c = (c1, . . . , cT ) and yi

over the class membership c:

Li = P (Yi = yi | Gi = g,xi1, . . . ,xiT )

=
C∑

c1=1

· · ·
C∑

cT=1

P (Ci = c,Yi = yi | Gi = g,xi1, . . . ,xiT )

=
C∑

c1=1

· · ·
C∑

cT=1

δc1|g(xi1)
T∏

t=2

τ
(t)

ct|ct−1g
(xit)

T∏
t=1

M∏
m=1

rm∏
k=1

ρ
I(yimt=k)

mkt|ctg

=

C∑
c1=1

· · ·
C∑

cT=1

L∗
i , (2.1)

where I(y = k) is the usual indicator function which has the value 1 if y is equal to k and 0

otherwise. In likelihood (2.1), the following three sets of parameters are estimated:
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• δc1|g(xi1) = P (Ci1 = c1 | Gi = g,xi1) represents the probability of the ith individual belong to

class c1 at time 1 given a group membership in g.

• τ
(t)

ct|ct−1g
(xit) = P (Cit = ct | Ci,t−1 = ct−1, Gi = g,xit) represents the transition probability

of class membership in ct in time t given the previous class membership in ct−1 and the group

membership in g.

• ρmkt|ctg = P (Yimt = k | Cit = ct, Gi = g) represents the probability of response k to the mth

item at time t given a class membership in ct at time t and a group membership in g.

In (2.1) we have assumed local independence, that is, the items Yi1t, . . . , YiMt are conditionally

independent given ct for t = 1, . . . , T . In addition, the sequence Ci = (Ci1, . . . , CiT ) is assumed

to constitute a first-order Markov chain for t = 2, . . . , T . The marginal probability of the class

membership at the initial time t = 1 would be

δc1|g(xi1) = P (Ci1 = c1 | Gi = g,xi1)

=
exp

{
x′
i1β

(1)

c1|g

}
C∑

c=1

exp
{
x′
i1β

(1)

c|g

} (2.2)

for c1 = 1, . . . , C, where β
(1)

C|g = 0. The transition probability that the ith individual changes their

class to Cit = ct from the previous class Ci,t−1 = ct−1 is, for ct = 1, . . . , C and t = 2, . . . , T ,

τ
(t)

ct|ct−1g
(xit) = P (Cit = ct | Ci,t−1 = ct−1, Gi = g,xit)

=
exp

{
x′
itβ

(t)

ct|ct−1g

}
C∑

c=1

exp
{
x′
itβ

(t)

c|ct−1g

} , (2.3)

where β
(t)

ct|ct−1g
= 0 when ct = ct−1. Note that class C at t = 1 serves as a baseline in (2.2),

whereas the class in the previous time point is the baseline in (2.3). Therefore, the coefficient

β
(t)

ct|ct−1g
in (2.3) can be interpreted as change in the log-odds of transitioning to class ct at time t

from the previous class ct−1 versus remaining at the same class as the previous ct−1 given a group

membership g. The marginal probability of the class membership at time t is not directly estimated

in likelihood (2.1) but rather is a function of other parameter:

δct|g(xi1, . . . ,xit) = P (Ct = ct | xi1, . . . ,xit)

=

C∑
c1=1

· · ·
C∑

ct−1=1

δc1|g(xi1)

t∏
j=2

τ
(j)

cj |cj−1g
(xij). (2.4)

2.2. Expectation-maximization algorithm

Under ordinary circumstances, the ML estimates for the parameters solve the score equation∑G
g=1

∑
i∈g ∂ logLi/∂π = 0, where π denotes the set of free parameters and

∏
i∈g represents

the product over the set of individuals in subgroup g. We use the EM algorithm (Dempster et al.,

1977) to obtain ML estimates of the model parameters specified in Equation (2.1). The E-step

computes the conditional probability that an individual i in subgroup g belongs to class sequence
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c = (c1, . . . , cT ) given his or her item responses yi and current estimates for π̂ for the parameters:

θi(c1,...,cT |g) = P (Ci = c | Yi = yi, Gi = g)

=
L∗

i

C∑
c1=1

· · ·
C∑

cT=1

L∗
i

, (2.5)

where L∗
i is defined in (2.1). The M-step maximizes the expected complete data likelihood (i.e.,

the likelihood for the cross-classification by Ci and Yi) with respect to the model parameters. This

likelihood can be written as

E

{
G∑

g=1

∑
i∈g

logL∗
i

}
=

G∑
g=1

∑
i∈g

C∑
c1=1

θi(c1|g) log
{
δc1|g(xi1)

}
+

G∑
g=1

∑
i∈g

T∑
t=2

C∑
ct=1

θi(ct−1,ct|g) log
{
τ
(t)

ct|ct−1g
(xit)

}

+

G∑
g=1

∑
i∈g

T∑
t=1

C∑
ct=1

θi(ct|g)

M∑
m=1

rm∑
k=1

I(yimt = k) log
{
ρmkt|ctg

}
, (2.6)

where θi(ct−1,ct|g) =
∑

c1
· · ·
∑

ct−2

∑
ct+1

· · ·
∑

cT
θi(c1,...,cT |g) and θi(ct|g) =

∑
ct−1

θi(ct−1,ct|g).

The first two sums in expression (2.6), which relate to the regression coefficients (i.e., β-parameters),

are the log-likelihood functions for the multinomial logistic regression model (Agresti, 2002), ex-

cept that the unobserved counts for ct for t = 1, . . . , T are replaced by the fractional expectations∑C
c1=1 θi(c1|g) and

∑T
t=2

∑C
ct=1 θi(ct−1,ct|g), respectively. Updates estimates for the regression co-

efficients can be calculated with the standard Newton-Raphson method for multinomial logistic

regression, provided that the computational routines allow fractional responses rather than integer

counts. In the last sum in (2.6), ρ-parameter can be interpreted as parameter in a multinomial

distribution when θi(ct|g) are known. Therefore, ρ-parameter can be updated as

ρ̂mkt|ctg =

G∑
g=1

∑
i∈g

θi(ct|g)I(yimt = k)

G∑
g=1

∑
i∈g

θi(ct|g)

.

We can easily extend the EM algorithm to a model with missing observations on measurement

items by using the missingness at random assumption (Rubin, 1987). In the E-step, the conditional

probability is calculated only with the observed responses of yi. We denote θobsi(ct|g) to distinguish it

from the previous θi(ct|g) that was given in Equation (2.5). The ρ-parameter is then obtained from

the provisional estimates ρ∗mkt|ctg by

ρ̂mkt|ctg =

G∑
g=1

∑
i∈g,obs

(t)
m

θobsi(ct|g)I(yimt = k) +
G∑

g=1

∑
i∈g,mis

(t)
m

θobsi(ct|g)ρ
∗
mkt|ctg

G∑
g=1

∑
i∈g

θobsi(ct|g)

, (2.7)

where obs
(t)
m and mis

(t)
m denote the sets of individuals who respond and fail to respond to the mth

item at time t, respectively. Because our data set contains missing observations on items, we shall

use Equation (2.7) for our calculations.
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2.3. Model diagnosis and local identifiability

The log-likelihood ratio statistic(LRT) is the standard way to assess goodness-of-fit by comparing

the fit of the estimated model to that of the saturated model. The LRT is asymptotically distributed

as chi-square with degrees of freedom equal to (number of possible response patterns − number

of parameters estimated − 1). However, the asymptotic assumption for an LRT generally does

not hold because LTA tends to involve large contingency tables with many degrees of freedom.

Therefore, we empirically determined the distribution of the LRT by generating bootstrap samples

of an LRT from the estimated LTA model (Langeheine et al., 1996). Bootstrap samples for an

LTA can be constructed in the following way: (a) fit the LTA model to the data set and obtain

the observed LRT based on ML estimates, (b) generate hypothetical new data set from the ML

estimates, (c) fit the model to the simulated data set by using the EM algorithm, and (d) compute

the LRT based on output from step (c). Repeating (b)–(d) many times (200 repetitions were used

in our example) produces a bootstrap sample of LRT that does not rely on any known distribution.

The area to the right of the observed LRT can be regarded as a bootstrap p-value.

Model identification is required to estimate the parameters of an LTA model correctly. As discussed

by McHugh, (1956) and Goodman (1974), a singular Hessian matrix indicates that the model is not

locally identifiable for the given data. If the observed data log-likelihood is concave, the inverse of

(−1 times) the Hessian matrix of this log-likelihood will consistently estimate the covariance matrix

for the ML estimates. However, in many cases we cannot estimate variances due to the boundary

solution—any of the estimated parameters is close to 0 or 1. In situations where some estimated

parameters lie on the boundary, those values can be fixed 0 or 1 a posteriori to make the remaining

parameters identifiable (Formann, 2003).

3. An Analysis of NLSY97

3.1. Data

The National Longitudinal Survey of Youth 1997(NLSY97) was based on a sample of 8984 U.S.

adolescents who were between ages of 12 and 18 years during the first survey in 1997. Data for

the current analysis were 1407 adolescents aged 12–14 years in 1997 who were identified as the

early-onset drinkers (all had started to drink by age 14 years). There are three self-report items

measuring adolescent drinking behaviors: how many days they had one or more drinks of an alcoholic

beverages during the last 30 days (Recent Drinking); how many days they had five or more drinks

on the same occasion during the last 30 days (Binge Drinking); and how many days they had drinks

immediately before or during school or work hours in the last 30 days (Drinking at School). The

responses for Recent Drinking were reduced to a three categories, non-drinker (0 days of drinking),

occasional drinker (1–5 days of drinking) and regular drinker (6 or more days of drinking). For

Binge Drinking, respondents who had consumed five or more drinks on the same occasion at least

one time were characterized as binge drinkers. The same binary rule was applied for Drinking at

School. These three drinking items were tracked over the three survey waves in 1997 (Wave 1), 2000

(Wave 4), and 2003 (Wave 7), corresponding to early adolescence (ages 12–14), middle adolescence

(ages 15–17), and late adolescence (ages 18–20), respectively. In addition to these three items, we

consider gender as a group variable and race and age as covariates in the multiple-group LTA with

logistic regression.
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Table 3.1. Goodness-of-fit statistics for a series of multiple-group LTA under various number of classes.

Full Model Restricted Model

C†
k‡

Log- Bootstrap
AIC k‡

Log- Bootstrap
AIC

likelihood p-value likelihood p-value

2 26 −5939.75 0.000 11931.51 18 −5980.00 0.000 11996.01

3 52 −5762.20 0.004 11628.40 40 −5780.78 0.004 11641.56

4 86 −5725.91 0.076 11623.81 70 −5736.32 0.208 11612.63

5 128 −5695.99 0.160 11647.98 108 −5710.32 0.128 11636.64

6 178 −5669.56 0.112 11695.12 154 −5682.64 0.108 11673.29

† is the number of classes; ‡ is the number of parameters.

3.2. Model selection

As shown in Bandeen-Roche et al. (1997), we do not need to consider covariates when selecting

the number of classes due to the marginalization property in LTA. To keep the interpretability of

classes stable over time, we fitted LTA models in which ρ-parameters were constrained to be equal

over time (i.e., ρmk|cg = ρmk1|cg = · · · = ρmkT |cg). However, since we have pooled samples over

two different subgroups (i.e., male and female), there was strong possibility that their ρ-parameters

could vary across gender. To select the number of classes, we began by fitting a two-class LTA,

where ρ-parameters were allowed to vary across gender (referred to Full Model). We then increased

the number of classes and fitted a three-class LTA. The procedure was repeated until we reached

a six-class LTA. To examine whether the ρ-parameters vary across gender, we compared another

series of LTA models, where the ρ-parameters were constrained to be equal across gender (referred to

Restricted Model). Table 3.1 shows a series of LTA models with evaluations based on the bootstrap

p-values and AIC for goodness-of-fit . We used 100 different sets of starting values and selected the

solution with the best fit in order to avoid local maxima. Among the full models, the four-class LTA

is the most parsimonious model with the bootstrap p-value of 0.076, which indicates an adequate

model fit. In addition, the four-class LTA provides the smallest AIC value (11623.81) as shown in

Table 3.1. Among the restricted models, the four-class LTA also shows an appropriate model fit

based on the bootstrap p-value (0.208) and a smallest AIC value (11612.63). Based on AIC values

of these two four-class LTA models combined with the results from the bootstrap p-value, we select

the restricted four-class LTA model to analyze the data set. Thus, for the remainder of this paper,

we will focus on the four-class LTA model where the ρ-parameters are invariant across gender.

To investigate local identifiability for the selected model, we fixed some parameters to make the

remaining parameters identifiable, as proposed by Formann (2003). Under the restricted four-class

LTA, the EM algorithm reached the final solution with 20 boundary estimates. The estimates of

six ρ-parameters and 14 τ -parameters were less than 0.001. Hence, we set those parameters to zero

a posteriori, reducing the number of parameters to be estimated to 50. The Hessian matrix in the

ML solution was non-singular under this condition, that the four-class LTA under consideration was

locally identifiable. Finally, we added race (Caucasian American, African American, and other) and

age as covariates to investigate variations in the relative occurrence of class membership.

3.3. Parameter estimates

Under the restricted four-class LTA model, the estimated ρ-parameters are presented in Table 3.2.

The values under the first column of Recent Drinking are the estimated probabilities of having

reported one to five days of drinking in the last 30 days (i.e., occasional drinking) given a class
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Table 3.2. Estimated probabilities of responding ‘any use’ to the drinking items for each class (ρ-parameter).

Drinking items

Class Recent Drinking Binge Drinking

Occasional Regular Drinking at School

1. Not current drinkers 0.067 0.000 0.000 0.000

2. Light drinkers 0.942 0.058 0.392 0.094

3. Regular binge drinkers 0.267 0.733 0.956 0.189

4. Problematic binge drinkers 0.810 0.190 0.624 1.000

Table 3.3. Estimated class prevalence over time (δ-parameter).

Class
Male: Year Female: Year

1997 2000 2003 1997 2000 2003

1. Not current drinkers 0.710 0.472 0.351 0.647 0.454 0.393

2. Light drinkers 0.190 0.202 0.190 0.282 0.361 0.351

3. Regular binge drinkers 0.023 0.271 0.448 0.033 0.174 0.249

4. Problematic binge drinkers 0.077 0.055 0.011 0.037 0.011 0.007

membership. The second column of Recent Drinking provides the estimated probabilities of having

reported six or more days of drinking in the last 30 days (i.e., regular drinking) for a given class

membership. For example, the majority of Class 2 responded to ‘occasional’ category in Recent

Drinking (0.942); however, most of adolescents in Class 3 reported themselves as regular drinkers

(0.733). This indicates that Class 3 is composed of adolescents who have consumed alcohol on

a regular basis during the past 30 days. The last two columns show the probabilities of having

consumed five or more drinks on the same occasion at least one time in the last 30 days for

Binge Drinking and consumed an alcoholic beverage right before or during school or work hours

at least once in the last 30 days for Drinking at School given a class membership, respectively. An

inspection of the estimated ρ-parameters leads to the adoption of the class names in Table 3.2. The

combination of all three items support a meaningful interpretation for each class as follow: early-

onset adolescents in Class 1 are ‘not current drinkers’ who have not been involved in any drinking

in the previous 30 days; those in Class 2 are ‘light drinkers’ who drink occasionally but have no

history of binge drinking or drinking at work or school; those in Class 3 are ‘regular binge drinkers’

who both drink regularly and engage in binge drinking; and those in Class 4 are ‘problematic binge

drinkers’ who do not drink regularly; however, both engage in binge drinking and drink right before

or during school or work hours in the last 30 days.

Table 3.3 presents the estimated marginal probability of belonging to a particular class over time for

male and female. To obtain marginal probabilities from a model with covariates, we can recommend

several approaches. One approach is to average the ML estimates of the subject-specific class

probabilities over the sample,

δ̄ct|g =
1

n

n∑
i=1


C∑

c1=1

· · ·
C∑

ct−1=1

δ̂c1|g(xi1)

t∏
j=2

τ̂
(j)

cj |cj−1g
(xij)

 , (3.1)

where δ̂c1|g(xi1) and τ̂
(j)

cj |cj−1g
(xij) are the estimated δ and τ values evaluated at the ML estimates for

β
(1)

c1|g and β
(t)

ct|ct−1g
, respectively. During early adolescence (i.e., year of 1997), about 71.0% of male

early-onset adolescents belonged to Class 1 (not current drinkers). However, the prevalence of Class

1 decreased to 35.1% by the time they were reached 18–20 years in 2003. For early-onset females

during early adolescence, about 64.7% belonged to Class 1, less prevalent than male; however, this
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Table 3.4. Estimated regression coefficients of age and race for the class prevalence during early adolescence in 1997.

Covariate
Male: Class† Female: Class†

d.f.
chi-

p-value
2 3 4 2 3 4 square

Age 0.403 0.881 0.306 0.332 1.237 0.468 6 24.820 0.000

Race‡
African American −0.147 −0.224 0.265 −0.797 −1.202 0.174 12 14.771 0.254

Other race 0.225 0.826 −0.210 −0.067 −24.746 0.511

† Class 1 (not current drinkers) is the baseline class; ‡ Caucasian American is the baseline race.

class was more prevalent when they were reached 18–20 years in 2003, comparing to male early-

onset adolescents. Interestingly, the prevalence of Class 2 (light drinkers) were stable over time

both for male and female adolescents; however, female adolescents were more likely belong to ‘light

drinkers’ than their male counterpart across all time points. During early adolescence, not many

adolescents belonged to Class 3 (regular binge drinkers) or Class 4 (problematic binge drinkers).

However, Class 3 emerged both for male and female during middle adolescence but became more

prevalent for male early-onset adolescents. The difference in the prevalence of Class 3 between male

and female increased from 9.7% during middle adolescence to 19.9% during late adolescence.

Table 3.4 provides the regression coefficients of age and race for the prevalence of each class during

early adolescence in 1997. The exponentiated coefficients may be interpreted as change in estimated

odds ratios for one-unit increase in a covariate. For instance, the estimated odds of belonging to

Class 3 (regular binge drinkers) versus Class 1 (not current drinkers) are exp(0.881) = 2.413 and

exp(1.237) = 3.445 times higher as an unit-year increase in age among male and female adolescents,

respectively. Speaking broadly, older adolescents are more likely to belong to the classes that are

characterized by intensified drinking behaviors, and the likelihood ratio statistic shows that age

makes a statistically significant contribution to the model. However, the three-level of race does not

explain the difference in the prevalence of class membership during early adolescence. We generated

a single binary indicator for race (Caucasian American/Other race), and fitted a four-class LTA

with logistic regression. The likelihood ratio test shows that race with two-level binary indicator

are not statistically significant, confirming our suspicion that there is no race effect on the class

prevalence during early adolescence.

Table 3.5 gives transitional probabilities of moving from one class in 1997 to another in 2000 and

from one in 2000 to another in 2003 conditional on gender. To obtain transition probabilities in

Table 3.5, we averaged the ML estimates of the subject-specific transition probabilities over the

sample,

τ̄
(t)

ct|ct−1g
=

1

n

n∑
i=1

exp
{
x′
itβ̂

(t)

ct|ct−1g

}
C∑

c=1

exp
{
x′
itβ̂

(t)

c|ct−1g

} .
The diagonal values in Table 3.5 represent the probability of remaining the same class as previous

time point. For example, during early-mid adolescence (i.e., from 1997 to 2000), the probability

of remaining in Class 1 (not current drinkers) for males (0.510) is higher than the probability for

females (0.477), implying that not current drinkers among females are more likely to forward to the

advanced alcohol classes during early-mid adolescence. However, from mid to late adolescence the

probability of remaining in Class 1 is higher for females, becoming female not current drinkers more

stable than their males counterpart. The probabilities of remaining in Class 2 (light drinkers) among

females (0.342 from early to mid adolescence and 0.542 from mid to late adolescence) are higher
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Table 3.5. Estimated transition probabilities (τ -parameter).

Class Class in 2000: Male Class in 2000: Female

in 1997 1 2 3 4 1 2 3 4

1 0.510 0.195 0.253 0.041 0.477 0.385 0.124 0.015

2 0.344 0.316 0.253 0.087 0.369 0.342 0.289 0.000

3 0.412 0.000 0.588 0.000 0.384 0.184 0.433 0.000

4 0.405 0.017 0.450 0.128 0.562 0.438 0.000 0.000

Class Class in 2003: Male Class in 2003: Female

in 2000 1 2 3 4 1 2 3 4

1 0.474 0.240 0.286 0.000 0.595 0.313 0.093 0.000

2 0.317 0.338 0.311 0.034 0.233 0.542 0.224 0.000

3 0.117 0.036 0.846 0.000 0.146 0.123 0.731 0.000

4 0.466 0.000 0.459 0.075 0.337 0.000 0.000 0.663

Table 3.6. Estimated regression coefficients for the transitional probability of ‘not current drinkers’ (‘not current drinkers’ class
is the baseline class).

Covariate
Class in 2000†: Male Class in 2000†: Female

d.f.
chi-

p-value
2 3 4 2 3 4 square

Age −0.017 0.632 0.498 0.241 −0.239 0.498 6 18.612 0.005

Race‡

African American −0.460 −1.949 0.958 −0.871 −2.224 33.692 12 49.717 0.000

Other race −0.145 −0.026 1.317 −0.378 −1.172 33.352

Covariate
Class in 2003†: Male Class in 2003†: Female

d.f.
chi-

p-value
2 3 4 2 3 4 square

Age 0.268 0.317 . 0.221 0.259 . 4 4.822 0.306

Race‡

African American −0.411 −0.840 . −1.227 −1.228 . 8 22.353 0.004

Other race −0.250 −0.487 . −1.045 0.495 .

† Class 1 (not current drinkers) is the baseline class; ‡ Caucasian American is the baseline race.

than those for males; however, the probabilities of remaining in Class 3 (regular binge drinkers)

among females are lower than those for males consistently over time. Interestingly, the diagonal

probabilities of males are higher for most of latent classes during early-mid adolescence. However,

during mid-late adolescence the diagonal probabilities of females are higher for all latent classes,

implying that females are more likely to remain in the same class as their middle adolescence in

late adolescence.

Table 3.6 shows the regression coefficients of age and race for the transitions of Class 1 (not current

drinkers). Note that these coefficients reflect the transitional probabilities provided in the two first

rows of Table 3.5 (i.e., the membership of Class 1 in 1997 and 2000). As mentioned before, we set

τ -parameters less than 0.001 to zero a posteriori; however, the regression coefficients regarding the

fixed τ -parameters are not estimated. You can see that there are two zero transition probabilities of

Class 1 from 2000 to 2003 in Table 3.5. The τ -parameters are fixed as zero, and the corresponding

regression coefficients are presented as “ · ” in Table 3.6 (not estimated). All covariates, except age

from 2000 to 2003, are significantly related with the transition of Class 1.

4. Discussion

This research has applied multiple-group LTA model to compare the sequential patterns of drinking

behaviors between male and female early-onset adolescents. In our analysis using the data set from
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NLSY97, we identified plausible latent classes from drinking items. In addition, the multiple-group

LTA differentiated sequential patterns of drinking behaviors across gender. Based on our selected

LTA model, early-onset adolescents, regardless of their gender, showed four common latent classes:

‘not current drinker’, ‘light drinkers’, ‘regular binge drinkers’, and ‘problematic binge drinkers’.

We estimated the effects of age and race on the class membership during early adolescence. For

both males and females, older adolescents were more likely to belong to the classes characterized by

intensified drinking behaviors during early adolescence. In addition, these covariates were used to

predict the transition of early-onset drinkers who belonged to Class 1 (not current drinkers) during

their adolescence. We found that white early-onset adolescents that belong to Class 1 were more

likely than their counterpart to move forward more advanced drinking classes.

We implemented the ML algorithm to estimate the unknown parameters via EM iterations. As

an alternative to this ML estimation, Bayesian inference via Markov chain Monte Carlo(MCMC)

methods may be an attractive method of fitting an LTA model. Bayesian methods open up new

possibilities for model checking and assessment of fit via the posterior check distribution, and

they provide interval estimates without difficulty when hypothesis tests involving combinations of

parameters are necessary to address specific research questions. Note that, in our example, the

δ-parameter (see in Table 3.3) and τ -parameter (see in Table 3.5) are not directly estimated but

rather are functions of other parameters. The standard errors of those estimated parameters cannot

be easily calculated using the ML method. Although using a Bayesian approach via MCMC may

overcome some of the shortcomings of ML, the ML methods are an efficient way to analyze LTA

models in many studies. They have good finite sample properties and provide reliable selection

tools. The results of simulation study (Chung et al., 2011) suggested that the ML method via

the EM algorithm have good finite sample properties in the latent class profile analysis(LCPA),

especially when measurement parameter are strong. Future work should explore the performance

of a Bayesian approach for LTA models and compare it to the performance of an ML method via

simulation study. We expect that each method will display its own unique strengths and weaknesses

under different conditions.
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