DOI QR코드

DOI QR Code

Image Fusion Based on Statistical Hypothesis Test Using Wavelet Transform

웨이블렛 변환을 이용한 통계적 가설검정에 의한 영상융합

  • Received : 20110500
  • Accepted : 20110700
  • Published : 2011.08.31

Abstract

Image fusion is the process of combining multiple images of the same scene into a single fused image with application to many fields, such as remote sensing, computer vision, robotics, medical imaging and military affairs. The widely used image fusion rules that use wavelet transform have been based on a simple comparison with the activity measures of local windows such as mean and standard deviation. In this case, information features from the original images are excluded in the fusion image and distorted fusion images are obtained for noisy images. In this paper, we propose the use of a nonparametric squared ranks test on the quality of variance for two samples in order to overcome the influence of the noise and guarantee the homogeneity of the fused image. We evaluate the method both quantitatively and qualitatively for image fusion as well as compare it to some existing fusion methods. Experimental results indicate that the proposed method is effective and provides satisfactory fusion results.

영상융합이란 두 개 이상의 영상을 하나의 영상으로 결합하는 기술로 원격탐사, 컴퓨터 비전, 로보틱스, 의료영상 그리고 군사분야 등 여러 분야에서 활용되고 있다. 지금까지 웨이블렛 변환을 이용한 영상 융합규칙들은 웨이블렛 분해 후 얻어진 각 영역에서 평균 혹은 분산과 같은 액티비티(activity) 측도를 단순 수치 비교를 통하여 영상융합의 픽셀을 선택하였다. 이 경우 특징을 갖고 있는 영상이 융합과정에서 배제될 수 있고 또한 잡음의 영향으로 왜곡된 융합영상을 얻을 가능성이 높다. 본 논문에서는 웨이블렛 변환 하에 분산에 대한 통계적 검정인 제곱 순위 검정을 사용하여 통계적으로 유의하다고 판단되는 영역만을 융합 영상의 대체 영역으로 선택하였다. 영상 실험 결과 제안된 방법은 가시적인 평가에서 뿐 만 아니라 정량적인 평가에서도 입력 영상의 종류와 관계없이 기존의 방법들 보다 뛰어난 결과를 보여주었다.

Keywords

References

  1. Arivazhagan, S., Ganesan, L. and Subash Kumar, T. G. (2009). A modified statistical approach for image fusion using wavelet transform, Signal, Image and Video Processing, 3, 137-144. https://doi.org/10.1007/s11760-008-0065-4
  2. Burt, P. J. and Adelson, E. H. (1983). The Laplacian Pyramid as a compact image code, IEEE Transactions on Communications, 3l, 532-540. https://doi.org/10.1109/TCOM.1983.1095851
  3. Burt, P. J. and Kolezynski, R. J. (1993). Enhanced image capture through fusion, Proceedings of 4th International Conference on Computer Vision, 173-182.
  4. Carper, W. J., Lillesand, T. M. and Kiefer, R. W. (1990). The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data, Photo-Grammetric Engineering & Remote Sensing, 56, 459-467.
  5. Conover, W. J. (1979). Practical Nonparametric Statistics, John Wiley & Sons, New York.
  6. He, C., Liu, Q., Li, H. and Wang, H. (2010). Multimodal medical image fusion based on IHS and PCA, Procedia Engineering, 7, 280-285. https://doi.org/10.1016/j.proeng.2010.11.045
  7. Li, H., Guo, L. and Liu, H. (2005). Current research on wavelet-based image fusion algorithms, Proceedings of SPIE, 5813, 360-367. https://doi.org/10.1117/12.602659
  8. Li, H., Manunath, B. S. and Mitra, S. K. (1994). Multi-sensor image fusion using the wavelet transform, ICIP, 51-55.
  9. Li, H., Manunath, B. S. and Mitra, S. K. (1995). Multisensor image fusion using the wavelet transform, Graphical Models and Image Processing, 57, 235-245. https://doi.org/10.1006/gmip.1995.1022
  10. Ma, H., Jia, C. and Liu, S. (2005). Multisource image fusion based on wavelet transform, International Journal of Information Technology, 11, 81-91.
  11. Mallat, S. G. (1999). A Wavelet Tour of Signal Processing, Academic Press.
  12. Moigne, J. L., Rhodes, A. C. and Eastman, R. (2002). Multiple sensor image registration, image fusion and dimension reduction of earth science imagery, Proceedings of the Fifth International Conference on Information Fusion, 999-1006.
  13. Ranchin, T. and Wald, L. (2000). Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation, Photogrammetric Engineering & Remote Sensing, 66, 49-61.
  14. Sasikala, M. and Kumaravel, N. (2007). A comparative analysis of feature based image fusion methods, Information Technology Journal, 6, 1224-1230. https://doi.org/10.3923/itj.2007.1224.1230
  15. Wu, J., Huang, H., Qiu, Y., Wu, H., Tian, J. and Liu, J. (2005). Remote sensing image fusion based on average gradient of wavelet transform, Proceedings of the IEEE, 1817-1821. https://doi.org/10.1109/ICMA.2005.1626836
  16. Yang, Y. (2011). Multiresolution image fusion based on wavelet transform by using a novel technique for selection coefficients, Journal of Multimedia, 6, 91-98.
  17. Yang, Y., Park, D. S., Huang, S. and Rao, N. (2010). Medical image fusion via an effective wavelet-based approach, EURASIP Journal on Advances in Signal Processing 2010, 1-13.

Cited by

  1. Robust Image Fusion Using Stationary Wavelet Transform vol.24, pp.6, 2011, https://doi.org/10.5351/KJAS.2011.24.6.1181