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Abstract

The pattern of methylation draws significant attention from cancer researchers because it is believed that

DNA methylation and gene expression have a causal relationship. As the interest in the role of methylation

patterns in cancer studies (especially drug resistant cancers) increases, many studies have been done inves-

tigating the association between gene expression and methylation. However, a model-based approach is still

in urgent need. We developed a finite mixture model in the Bayesian framework to find a possible relation-

ship between gene expression and methylation. For inference, we employ Expectation-Maximization(EM)

algorithm to deal with latent (unobserved) variable, producing estimates of parameters in the model. Then

we validated our model through simulation study and then applied the method to real data: wild type and

hydroxytamoxifen(OHT) resistant MCF7 breast cancer cell lines.

Keywords: Expectation-Maximization, hierarchical statistical model, latent variable, methylation, mix-

ture model.

1. Introduction

Epigenetic events (that include DNA methylation) are involved in complex processes of biological

interactions that results in the regulation of gene expression (Herman, 1999; Hinshelwood and

Clark, 2008; Jeong et al., 2010). DNA methylation is the process that add a methyl group to the

5 position of the cytosine pyrimidine ring, that can be inherited from cell divisions. In mammals,

DNA methylation is a crucial part of normal organismal development and cellular differentiation

and stably alters the gene expression pattern in cells. In addition, DNA methylation plays a key

role in the development of almost all types of cancer (Baylin and Herman, 2000; Bird, 2002; Herman

and Baylin, 2003; Dwivedi et al., 2003).

In the clinical setting, drug resistance is a critical issue for cancer treatment. Sometimes drug

resistance happens from the beginning of treatment. However, some people do respond first and stop

responding after a course of treatment of the same drug that is known as acquired drug resistance.

Reasons for such resistance possibly result from epigenetic events such as DNA methylation and

chromatin modification. Especially, epigenetic alteration such as DNA methylation plays a key role

in acquired drug resistance (Jones and Laird, 1999; Jones and Baylin, 2007).
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As the interest in the role of methylation pattern in cancer study increases, many studies have

investigated the association between gene expression and methylation (Ahuja et al., 1997; Muller et

al., 2001; Esteller et al., 1999; Hui et al., 2000; Wang et al., 2009). In a classic approach, fold change

is used for status call and χ2 test (Fisher’s exact test for small sample) is used to test for association

(Ahuja et al., 1997; Muller et al., 2001; Hui et al., 2000). Such methods provide a kind of global

view (category-specific) on the interplay between gene expression and methylation. However, there

is increasing evidence that such association is gene-specific. Model-based approaches (especially an

empirical Bayes model) have been developed to illustrate the evidence of a local view (gene-specific)

other than a global view (Jeong et al., 2010).

A hierarchical statistical model in the Bayesian framework (hierarchical Bayes model) was developed

by Jeong et al. (2010) and George (1985). They assume normality on log-transformed fold change

and specify normal prior on the mean vector. Inference is based on the posterior distribution of the

mean vector of each gene. The estimated prior covariance provides a global view and the covariance

estimate from the posterior distribution of each gene gives a local view on associations. This method

improves the classic χ2 test because both the global and the local view of association are provided.

It, however, still requires an artificial constant choice to specify the window that is used to call the

status of each gene that can be removed in the nine component mixture model.

Since a general understanding about the relationship between gene expression and methylation is

that hypomethylated genes are more likely upregulated, people are interested in a specific category,

for example, category of hypomethylation and upregulation (Ahuja et al., 1997; Muller et al.,

2001; Esteller et al., 1999; Hui et al., 2000; Wang et al., 2009). However, the method of Jeong

et al. (2010) is not category-specific because all (nine) combinatorial categories are explained

with only one normal distribution even though it provides a global and local (gene-specific) view

on association. Thus, we developed a nine component normal mixture model in the Bayesian

framework to obtain a clear insight on the global association in each category (Day, 1969; Figueiredo

and Jain, 2002; Xu and Jordan, 1996). In a sense, our method has nine global views and each view

corresponds to each category, respectively. The main difference from the method of Jeong et al.

(2010) is that our method assigns a normal distribution to each category that provides a gene-

specific view plus category-specific view. In addition, we do not need to divide sample space for

gene assignment, implying that the choice of constant for space categorization is not required. We

employ Expectation-Maximization(EM) algorithm to deal with latent (unobserved) variable, which

produces estimates of parameters in the model.

The remainder of the paper is consisted as follows. In Section 2, we describe the model. Estimation

is described in Section 3. Then, we validate our model through simulation study in Section 4 and

real data analysis is given in Section 5. We conclude the paper in Section 6.

2. The Model

We have two data sets: gene expression(GE) and DNA methylation data. Both GE and methyla-

tion data have three different classes, respectively (GE: up-regulation, no change, down-regulation;

Methylation: hypomethylation, no change, hypermethylation). Since we work on the cointegrated

data, it is very natural to consider nine component mixture model and each component is assigned

to each combinatorial classes. We look at marginal model first and move on joint model. Such

transition helps us to understand the complex model.



Association between Gene Expression and Methylation 611

2.1. Marginal model on gene expression

In gene expression data, we have two groups to compare the wild type(WT) and OHT resistant

group. Each group has 4 replicates and there are different number of probes within each gene. The

marginal model we use here is:

Gijkl = µil + bij + ϵijkl, i = 1, . . . , I, j = 1, . . . , Ji, k = 1, . . . ,K, l = 1, 2,

where Gijkl is gene expression of probe j within gene i at kth replicate in group l. Note that µil

is average expression of gene i in group l, bij added effect of probe j for gene i and ϵijkl is error

term. For three different status for gene expression, we consider three component mixture model in

which each component corresponds to the each status: up-regulated, not differentially expressed,

and down-regulated. We assume normality on each component in the model:

bij ∼ N
(
0, σ2) , ϵijkl ∼ N

(
0, δ2

)
µi ≡ (µi1, µi2)

d
=


N(λ1,Σ1), if gene i is down-regulated (Xi = 1),

N(λ0,Σ0), No change (Xi = 0),

N(λ−1,Σ−1), if gene i is up-regulated (Xi = −1).

We can re-express the model in the linear form: for gene i,

Gi = △i1βi + ϵi,

where

△i1 =



14 0 14
...

...
. . .

14 0 14

0 14 14
...

...
. . .

0 14 14


, βi =


µi1

µi2

b1
...

bJi

 , 14 =


1

1

1

1

 ,

and

Gi = (Gi111, Gi121, Gi131, Gi141, Gi211, Gi221, Gi231, Gi241, . . . , GiJi11, . . . , GiJi41, . . .)
t .

In the case that gene i is down-regulated, each component in our model has the following distribu-

tion:

βi|Xi=1 ∼ N(µ1
∗,Σ1

∗), µ1
∗ = (λ1, 0)

t, Σ1
∗ =

(
Σ1 o

0 σ2IJi

)

and

Gi|Xi=1,βi
∼ N

(
△i1βi, δ

2Ini

)
where ϵi ∼ N(0, δ2Ini) and ni = 2K × Ji.
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2.2. Marginal model on methylation

Similarly, marginal model for methylation is given:

Mijl = ηil + aij + dijl, i = 1, . . . , I, j = 1, . . . , Ji, l = 1, 2,

where Mijl is methylation data of probe j within gene i in group l. Note that ηil is mean effect of

gene i in group l, aij added effect of probe j for gene i, and dijl error term. The only difference is

the number of replicates: no replicate here. Again, we consider a three component mixture model

for three different status of methylation: hypomethylated, unmethylated, and hypermethylated.

We consider following distributions for each component:

aij ∼ N
(
0, ω2) , dijl ∼ N

(
0, τ2

)
ηi ≡ (ηi1, ηi2)

d
=


N(ξ1,Ω1), if gene i is hypomethylated (Yi = 1),

N(ξ0,Ω0), No change (Yi = 0),

N(ξ−1,Ω−1), if gene i is hypermethylated (Yi = −1).

Thus, the rearranged model in the linear form is given: for gene i,

Mi = ▽i1αi + di,

where

▽i1 =



1 0 1
...
...

. . .

1 0 1

0 1 1
...
...

. . .

0 1 1


, αi =


ηi1
ηi2
a1
...

aJi


and

Mi = (Mi11, . . . ,MiJi1,Mi12, . . . ,MiJi2)
t.

As an illustration, when gene i is hypermethylated, each component in our model follows the

distribution below:

αi|Yi=1 ∼ N(η1
∗,Ω1

∗), η1
∗ = (ξ1, 0)

t, Ω1
∗ =

(
Ω1 o

0 ω2IJi

)

and

Mi|Yi=1,αi
∼ N

(
▽i1αi, τ

2Imi

)
,

where di ∼ N(0, τ2Imi) and mi = 2× Ji.

2.3. Joint model

In this section, we consider joint model on merged data set, i.e., Di = (Gi
t,Mi

t)t. We apply nine

component mixture model to the data.
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Figure 2.1. Nine categories; X-axis presents three different gene expression status: down-regulation, no change, up-regulation.
Y-axis presents three different methylation status: hypomethylation, no change, hypermethylation.


µi1

µi2

ηi1
ηi2

 d
=



N(µ1,Σ1), Zi = 1 (Xi = 1 and Yi = 1),

N(µ2,Σ2), Zi = 2 (Xi = 1 and Yi = 0),

N(µ3,Σ3), Zi = 3 (Xi = 1 and Yi = −1),

N(µ4,Σ4), Zi = 4 (Xi = 0 and Yi = 1),

N(µ5,Σ5), Zi = 5 (Xi = 0 and Yi = 0),

N(µ6,Σ6), Zi = 6 (Xi = 0 and Yi = −1),

N(µ7,Σ7), Zi = 7 (Xi = −1 and Yi = 1),

N(µ8,Σ8), Zi = 8 (Xi = −1 and Yi = 0),

N(µ9,Σ9), Zi = 9 (Xi = −1 and Yi = −1).

As an illustration, nine categories are plotted in Figure 2.1. The value of Zi presents the nine

combinatorial classes. For example, the class of Zi = 1 corresponds to C1 in the figure

For specific gene i, the linear model we use here is:

Di = △i
⋆βi

⋆ + ϵi
⋆,

where

△i
⋆ =



14 14
...

. . .

14 14
14 14
...

. . .

14 14

1 1
... 0

. . .

1 1

1 1

0
...

. . .

1 1



, βi
⋆ =



µi1

µi2

ηi1
ηi2
b1
...

bJi

a1
...

aHi



.

The distribution assumption for each component in our model is given:

(µi1, µi2, ηi1, ηi2)
t
|Zi=l ∼ N(λl,Σl), βi

⋆
|Zi=l ∼ N(µl

⋆,Σl
⋆)
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and

Di|Zi=l,βi
⋆ ∼ N

(
△il

⋆βi
⋆,

(
δ2Ini 0

0 τ2Imi

))
,

where

µl
⋆ = (µl

t, 0)t, Σl
⋆ =

Σl 0 0

0 σ2IJi 0

0 0 ω2IHi

 .

Thus, hierarchical statistical model is given:

β⋆
i|Zi=l ∼ N(µl

⋆,Σl
⋆),

Di|Zi=l,βi
⋆ ∼ N

(
△il

⋆βi
⋆, diag

(
δ2Ini , τ

2Imi

))
.

3. Estimation

We introduce Expectation-Maximization(EM) algorithm to handle latent variables. The EM al-

gorithm consists of two steps, Expectation and Maximization (Dempster et al., 1977; McLachlan

and Krishnan, 2007; Sundberg, 1974, 1976; Wu, 1983). In the E-step, conditional expectation of

complete-data log likelihood given observed data is calculated. Then, parameter estimates are up-

dated in the M-step. These two iterative steps are repeated until convergence of the algorithm is

attained. We briefly describe the EM algorithm applied to our case here.

3.1. E-step

In this step, we calculate conditional expectation of complete-data log likelihood given observed

data:

Q
(
θ; θ(k)

)
≡ E

[
logLc(θ)|D, θ(k−1)

]
,

where logLc(θ) is complete-data log likelihood function and θ is the parameter vector. We need

to calculate proportion estimates and conditional expectation of the mean vector. The proportion

variable for gene i is defined as:

(Zi1, . . . , Zi9) =


(1, 0, . . . , 0), if Zi = 1,

...
...

(0, . . . , 0, 1), if Zi = 9,

where P (Zil = 1) = ρil, l = 1, . . . , 9 and
∑

l ρil = 1.

At iteration k, posterior probability of each proportion variable of belonging to category l is given:

E
(
Zil|Di, θ

(k−1)
)
= P

(
Zil = 1|Di, θ

(k−1)
)
=

ρl
(k−1)

[
Di|Zil = 1, θ(k−1)

]
∑
d

ρd(k−1)
[
Di|Zil = 1, θ(k−1)

] = ρil
(k).

Then, we calculate conditional expectation of mean vector, βi. Here we need to calculate two things:

E
(
βi|Di, θ

(k−1), Zil = 1
)
, Cov

(
βi|Di, θ

(k−1), Zil = 1
)
.
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To this end, we derive posterior distribution of parameter given data:[
βi|Di, θ

(k−1), Zil = 1
]
∼ N(K,K∗),

where K∗ = (△i
TΣe

−1△i +Σpl
−1)−1 ≡ Vil

(k) and K = K∗(△i
TΣe

−1Di +Σpl
−1µl

∗(k)) ≡ Λil
(k).

3.2. M-step

Once E-step is done, we update parameter estimates by maximizing the target function, Q(θ; θ(k)).

The complete-data log likelihood for gene i is given:

logLc(θ) =
∑
l

Zil {log ρl + log[Di, βi
⋆|Zi

⋆, θ]}

and
∑

l ρl = 1. Thus, maximization with a constraint on ρl can be solved by using Lagrange

Multipliers:

R(θ, λ) = Q
(
θ; θ(k)

)
− λ

(∑
l

ρl − 1

)
.

Under the normality assumptions, parameter estimators can be easily calculated with algebra and

each parameter in the model has the closed form estimator, respectively. At the kth iteration,

estimators in closed form are given:

ρl
(k+1) =

∑
i

ρil
(k)

I
,

(µl
∗)(k+1) =

∑
i

ρil
(k)Λil

(k)∑
i

ρil(k)
,

δ2 =
1

N

∑
i

∑
l

ρil
(k)

[
tr
(
△i

(1)T△i
(1)Vil

(k)
)
+
(
Di −△iΛil

(k)
)(1)T (

Di −△iΛil
(k)
)(1)]

,

τ2 =
1

M

∑
i

∑
l

ρil
(k)

[
tr
(
△i

(2)T△i
(2)Vil

(k)
)
+
(
Di −△iΛil

(k)
)(2)T (

Di −△iΛil
(k)
)(2)]

,

σ2 =
8

N

∑
i

∑
l

ρil
(k)

[
tr
(
Vil

2(k)
)
+
(
µl

∗ − Λil
(k)
)(2T ) (

µl
∗ − Λil

(k)
)(2)]

,

ω2 =
2

M

∑
i

∑
l

ρil
(k)

[
tr
(
Vil

3(k)
)
+
(
µl

∗ − Λil
(k)
)(3T ) (

µl
∗ − Λil

(k)
)(3)]

,

Σl =
1∑

i

ρil(k)

∑
i

ρil
(k)

[
Vil

1(k) +
(
µl

∗ − Λil
(k)
)(1) (

µl
∗ − Λil

(k)
)(1T )

]
,

where I is the number of genes. Note that

△i =

(
△i

(1)

△i
(2)

)
, Vil =

 Vil
(1) · ·
· Vil

(2) ·
· · Vil

(3)

 and Λil =

 Λil
(1)

Λil
(2)

Λil
(3)

 .
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3.3. Inference on relationship between GE and methylation

Given the parameter estimates of interest, we can characterize relationship between gene expression

and methylation. For local (gene-specific) association of gene i, we use covariance estimate from

posterior distribution of gene i:

ĉorrl(GEi,Mi) =
ĉovl(GEi,Mi)√

v̂arl(GEi)
√

v̂arl(Mi)
,

where corrl(GEi,Mi) is local correlation between gene expression and methylation of gene i. For a

category-specific association of a category s, we use estimated prior covariance for category s:

ĉorrs(GE,M) =
ĉovs(GE,M)√

v̂ars(GE)
√

v̂ars(M)
,

where corrs(GE,M) is category-specific correlation between gene expression and methylation of

category s.

4. Simulation Study

In this section, we evaluate our method through simulation study. We generate data that mimics

the structure of real data as much as possible given in the next section. Structural similarity is

summarized as follows: (1) data were generated based on normality assumption, (2) we consider

two groups such as case and control, (3) within each group, gene expression has four replication,

but no replicate for methylation, and (4) each gene has a couple of probes ranging from 1 to 4.

4.1. Simulation setup

The data are generated jointly by using pre-specified values given below.

• The number of genes: 800.

• Each gene has a few probes: 1 ∼ 4.

The true parameter values are given:

ρ = (1, 2, 1, 2, 4, 2, 1, 2, 1)/16, σ2 = 0.81, δ2 = 1.96, ω2 = 0.64, τ2 = 1.44,

Σ1 =


1 0.9 0.1 0.1

0.9 1 0.1 0.1

0.1 0.1 1 0.9

0.1 0.1 0.9 1

 , µ1 =


9

3

9

3

 , Σ2 =


1 0.9 0.1 0.1

0.9 1 0.1 0.1

0.1 0.1 2 1.8

0.1 0.1 1.8 2

 , µ2 =


9

3

6

6

 ,

Σ3 =


1 0.9 0.1 0.1

0.9 1 0.1 0.1

0.1 0.1 1.5 1.2

0.1 0.1 1.2 1.5

 , µ3 =


9

3

3

9

 , Σ4 =


2 1.8 0.1 0.1

1.8 2 0.1 0.1

0.1 0.1 1 0.9

0.1 0.1 0.9 1

 , µ4 =


6

6

9

3

 ,

Σ5 =


2 1.8 0.1 0.1

1.8 2 0.1 0.1

0.1 0.1 2 1.8

0.1 0.1 1.8 2

 , µ5 =


6

6

6

6

 , Σ6 =


2 1.8 0.1 0.1

1.8 2 0.1 0.1

0.1 0.1 1.5 1.2

0.1 0.1 1.2 1.5

 , µ6 =


6

6

3

9

 ,
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Figure 4.1. Simulated data; top: gene expression(left) and methylation(right) at the probe level; bottom: gene expression(left)
and methylation(right) at the gene level

Table 4.1. Simulated data: Parameter estimates

Parameter True value Parameter estimates

(ρ1, ρ2, ρ3) (0.0625, 0.125, 0.0625) (0.06625, 0.11750, 0.06750)

(ρ4, ρ5, ρ6) (0.1250, 0.250, 0.1250) (0.12750, 0.23625, 0.13375)

(ρ7, ρ8, ρ9) (0.0625, 0.125, 0.0625) (0.07000, 0.12125, 0.06000)

(δ2, τ2) (1.96, 1.44) (1.9385, 1.3358)

(σ2, ω2) (0.81, 0.64) (0.8395, 0.7208)

(µ11, µ12) (9, 3) (9.3237, 3.2087)

(µ41, µ42) (6, 6) (5.8922, 5.9481)

(µ71, µ72) (3, 9) (3.0097, 9.0770)

(η11, η12) (9, 3) (8.6763, 2.6672)

(η21, η22) (6, 6) (5.6981, 5.5928)

(η31, η32) (3, 9) (2.9341, 8.8845)

Σ7 =


1.5 1.2 0.1 0.1

1.2 1.5 0.1 0.1

0.1 0.1 1 0.9

0.1 0.1 0.9 1

 , µ7 =


3

9

9

3

 , Σ8 =


1.5 1.2 0.1 0.1

1.2 1.5 0.1 0.1

0.1 0.1 2 1.8

0.1 0.1 1.8 2

 , µ8 =


3

9

6

6

 ,

Σ9 =


1.5 1.2 0.1 0.1

1.2 1.5 0.1 0.1

0.1 0.1 1.5 1.2

0.1 0.1 1.2 1.5

 , µ9 =


3

9

3

9

 .

The simulated data obtained by using the values above are given in Figure 4.1.

Here we consider the iteration size of 300. Parameter estimates are summarized in Table 4.1 in

order to check the accuracy of our method

Since our estimates are very close to the true value of each parameter, we are sure that our method

is working very well under the condition that our assumption is correct. In addition, we checked the

accuracy of the assignment. To this end, we apply a cutoff value to the posterior probability that

each gene belongs to each category. Here we consider a stringent cutoff value of 0.9. Assignment

results are summarized in the Table 4.2. As we can see, our method correctly assigns 769 genes out

of 800, i.e., accuracy is more than 96%(796/800 = 0.96125).
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Table 4.2. Simulated data: The results of category assignment; NG: number of genes(true value), NAG: number of assigned
genes, NCA: number of correctly assigned genes, NIA: number of incorrectly assigned genes

Cutoff = 0.9 C1 C2 C3 C4 C5 C6 C7 C8 C9 Tot

NG 50 100 50 100 200 100 50 100 50 800

NAG 53 94 54 102 189 107 56 97 48 800

NCA 50 94 50 97 186 99 50 95 48 769

NIA 3 0 4 5 3 8 6 2 0 31

Table 5.1. GE data structure

Group 1 Group 2

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4

Gene 1

b11 G1111 G1121 G1131 G1141 G1112 G1122 G1132 G1142

b12 G1211 G1221 G1231 G1241 G1212 G1222 G1232 G1242
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

b1J1 G1J111 G1J121 G1J131 G1J141 G1J112 G1J122 G1J132 G1J142

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

Gene I

bI1 GI111 GI121 GI131 GI141 GI112 GI122 GI132 GI142

bI2 GI211 GI221 GI231 GI241 GI212 GI222 GI232 GI242
.
..

.

..
.
..

.

..
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

bIJI
GIJI11 GIJI21 GIJI31 GIJI41 GIJI12 GIJI22 GIJI32 GIJI42

5. Application to Real Data

In the previous section, we noticed that our method is working well when our assumption is correct.

In this section, we apply our method to real data: wild type and OHT resistant MCF7 breast cancer

cell lines.

5.1. Data description (OHT versus WT)

For gene expression analysis, the Human Genome U133A 2.0 Array was used; in addition, dif-

ferential methylation hybridization(DMH) was done using Affymetrix oligonucleotide microarrays.

Microarray Analysis Suite(MAS) version 5.0 was used for preprocessing. Experimental details were

described in (Fan et al., 2006).

We compare two groups, wild type and OHT resistant cell line. Each group in gene expression has

four replicates while each group in methylation has no replicate. GE data structure is given in the

Table 5.1. We, however, restrict our attention to genes with at least two “present call” for gene

expression and our focus to DNA methylation in the promoter region. Then, we select common

genes existing in both data sets. As a result, gene expression data have 11286 probes at the probe

level and 4078 genes at the gene level while methylation data have 10223 probes and 4078 genes.

The raw data plot is given in Figure 5.1.

5.2. Results

As an initial value for long chain, we use parameter estimates obtained from pilot study with

iteration size of 300. Based on the result of the parameter estimates, we estimate that the iteration

size of 2000 is enough to make sure the convergence of EM algorithm. As an illustration, trace plot

of four variance estimates are given in Figure 5.2.
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Figure 5.1. Raw data plot

Figure 5.2. Four variance estimates

All parameter estimates are summarized in Table 5.2. Here ρ1, . . . , ρ9 are proportion estimates

corresponding to each category, respectively. The majority of the genes (30%) belong to Category

5 (C5).

At the category level, global association is summarized in Table 5.3.

In Table 5.3, it is clear that association is category-specific. For example, let us focus on the first

row of the Table 5.3, correlation between wild type gene expression and wild type methylation.

Each category has totally different correlation estimates ranging from −0.61 to 0.95, implying that

correlation is category-specific.

To examine the association at the gene level, we selected one category (say, Category 3) and cal-

culated gene-specific association three different ways as done in the global case: (1) correlation

between WT GE and WT Methylation, (2) correlation between resistant GE and resistant Methy-

lation, (3) correlation between difference in the two groups of GE and that of Methylation. In

Figure 5.3, three different histograms that show the distribution of local (gene-specific) associations
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Table 5.2. Real data: Parameter estimates

Parameter Parameter estimates

(ρ1, ρ2, ρ3) (0.1135, 0.0780, 0.0329)

(ρ4, ρ5, ρ6) (0.1089, 0.2990, 0.0933)

(ρ7, ρ8, ρ9) (0.1275, 0.1017, 0.0453)

(δ2, τ2) (0.3514, 0.1024)

(σ2, ω2) (5.3047, 2.5286)

(µ11, µ12) (9.9819, 9.6381)

(µ41, µ42) (11.1259, 11.1306)

(µ71, µ72) (8.6259, 9.0194)

(η11, η12) (8.1152, 7.6924)

(η21, η22) (10.0419, 9.8902)

(η31, η32) (8.7607, 9.2403)

Table 5.3. Estimated global correlation for nine category

Corr C1 C2 C3 C4 C5 C6 C7 C8 C9

Corr(GEW ,MW ) 0.176 0.130 −0.081 0.264 0.379 0.947 −0.299 −0.607 −0.210

Corr(GER,MR) 0.228 0.635 0.299 0.366 0.427 0.890 −0.292 −0.680 −0.209

Corr(GEd,Md) 0.237 0.041 −0.636 −0.554 −0.516 0.918 −0.930 −0.720 −0.256

Figure 5.3. Histogram of local correlation for category 3: left(correlation between gene expression wild type and methylation wild
type); center(correlation between gene expression resistant and methylation resistant); right(correlation between gene expression
difference and methylation difference)

are given. As we can see, the local correlations from each gene are widely distributed, implying

that correlation is gene-specific.

As an illustrating example, we selected gene CDH3 that is very crucial in breast cancer studies. It is

well known that the CDH3 gene, which act as a tumor suppressor gene, is hypomethylated in breast

cancer. Our method assigned the gene to Category 4 (no change in GE and hypomethylation). Es-

timated mean of the gene is µ̂ = (10.338, 10.417, 6.754, 5.113) where µ = (µGEW , µGER , ηMW , ηMR).

Furthermore, at the category level, Corr4(GEd,Md) = −0.554 and local association for the gene

CDH3, CorrCDH3(GEd,Md) was −0.272. Even though there is weak signal, our results are consistent

with the general understanding that hypomethylated genes are more likely to be upregulated.
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6. Conclusion

In this article, we constructed hierarchical Bayes model to get clear insight on the interplay between

gene expression and DNA methylation in promoter region. Our model provides a global (category-

specific) and local (gene-specific) view on association, and such rich information might be used

for an understanding of epigenetic therapy, leading to the important part of drug discovery. For

example, through the restoration of DNA methylation patterns, we may make cancer cells respond

back to the treatment.

Our results show that category-specific (global) correlation varies from category to category (for

example, Corr(GEW ,MW ) ranges from −0.6 to 0.9 in Table 5.3). In addition, within each cate-

gory (say, Category 3), the distributions of three different types of local correlations are different.

Collectively, our results show that association between gene expression and DNA methylation is

category-specific and gene-specific as well.

Applying a cutoff value to the posterior probability of each gene, our method assigns each gene

to one of nine categories. After such gene assignment, we may focus on subset of genes that are

assigned to a category of interest, especially, hypomethylated categories (say, Category 1, 4, 7) for

breast cancer studies. Then those genes can be used for further study such as gene set analysis and

gene pathway analysis. Since tens of thousands of genes are overwhelming for such analysis, our

method plays a key role of narrowing the number of genes to produce an appropriate number of

genes for following studies.
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