Journal of the Korean Institute of Illuminating and Electrical Installation Engineers (2011) 25(8) : 8~19 http://dx.doi.org/10.5207/JIEIE.2011.25.8.008

王 25-8-2

듀티 비에 따른 단상 Z-소스 인버터의 효율과 출력 전압에 관한 연구

(A Study on the Output Voltage and Efficiency of the Single-Phase Z-Source Inverters According to Duty Ratio)

홍승표*·정영국·임영철

(Seung-Pyo Hong · Young-Gook Jung · Young-Cheol Lim)

Abstract

This paper was compared for the output voltage and efficiency of the single-phase Z-source inverter(ZSI) according to shoot through duty ratio D. The eight single-phase ZSI in this study are typical ZSI, Embedded ZSI(EZSI), Improved ZSI(IZSI), Quasi ZSI(QZSI), Series ZSI, Trans ZSI(TSI), Switched inductor ZSI(SL-ZSI) and Extended boost ZSI (exZSI). The eight ZSI are divided into two Groups. ; Group-1 which is ZSI with the ordinary voltage boost factor B, and Group-2 which is ZSI with the maximum voltage boost factor B. For the execution of the proposed study, the PSIM simulation was achieved under the condition of input DC voltage=150[V] of ZSI, load =30[Ω] and 60[Hz] output filter. The output voltage and efficiency of each ZSI were calculated within the limits of D=0.1 ~0.4. As a result, the output peak voltage of Group-2 was suddenly increased in a specified duty ratio D, and its efficiency was rapidly decreased. On the contrary, Group-1 shown the output and efficiency characteristics without sudden change compared to Group-2 despite the duty ratio increase. The efficiency of the Group-2 was slightly declined at duty ratio D of the most output voltage, but, in case of Group-1, the efficiency was slightly declined. Finally, the input DC current of ZSI with DCM and CCM was discussed.

Key Words: Z-Source Inverters, Efficiency and Output voltage, Shoot-through Duty Ratio. CCM, DCM

* 주저자 : 전남대학교 전기공학과 석사과정 Tel : 061-469-1263, Fax : 061-469-1353 E-mail : jyg@db.ac.kr 접수일자 : 2011년 4월 8일 1차심사 : 2011년 4월 16일, 2차심사 : 2011년 6월 28일 심사완료 : 2011년 8월 4일

1. 서 론

전력전자 기술의 눈부신 발전으로 인해 PWM 인버 터는 산업현장과 의료분야 그리고 제어기기까지 광범 위 한 분야에 적용이 되고 있다. PWM 인버터는 교류 전원을 직류로 변환한 후에 이를 원하는 주파수의 교 류 전압으로 변환하는 형태를 갖고 있다. 그러나 직류

전원을 직접 교류전압으로 변환하는 경우도 있는데, 태양광 발전이나 연료전지 등 신재생 에너지 분야의 응용이 그 경우라 할 수 있다. 이때 PWM 인버터의 입 력으로는 낮은 직류전압이 공급되므로 이를 높은 직 류전압으로 부스트한 후 교류 전압을 발생하는 twostage구조[1]를 갖는다. 이러한 two-stage구조의 인버 터는 그 자체의 제어 방법 이외에도 부스트 컨버터의 스위칭 소자의 제어 방법이 추가로 필요하다. 이 방법 은 구성과 제어의 복잡성의 문제점이 있다[2]. 일반적 으로 PWM 인버터의 동일한 암의 스위치가 단락되게 되면 스위치 소자는 파괴가 된다. 이러한 암 단락 현 상을 방지하기 위해 PWM 펄스에 데드타임(Dead time)을 추가하는데, 이것은 교류 출력파형에 왜곡을 유발하여 효율이 감소되는 원인으로 작용한다.

이러한 문제점을 보완하기 위해 L-C를 X-형태로 한 Z-임피던스 네트워크의 Z-소스 인버터(ZSI)가 근 래 제안되었다. Z-소스 인버터는 연료전지 전원에 최 적화된 인버터로서, Z-임피던스 네트워크와 암 단락 을 이용하여 낮은 입력 직류전압으로부터 높은 교류 전압을 곧바로 얻을 수 있다. 따라서 ZSI는 직류 부스 트 컨버터가 필요하지 않은 single-stage구조로 되며, 인버터의 암 단락을 이용하므로 데드타임을 고려하지 않은 간단한 구성을 할 수 있다[3]. ZSI는 초기 버전인 X-모양 L-C구조의 Z-네트워크를 갖는 기본형 ZSI를 비롯하여, QZSI(Quasi Z-source inverter)[4], EZSI (Embedded Z-source inverter)[5], Series ZSI(Series Z-source inverter)[6], IZSI(Improved Z-source inverter)[7]등 보통의 전압 부스트 율을 갖는 ZSI(제1 그룹)가 개발되었으며, 최근에는 TSI(Trans Z-source inverter)[8], exZSI(Extended boost Z-source inverter) [9], SL-ZSI(Switched inductor Z-source inverter)[10]등 전압 부스트 율을 최대화 시킨 ZSI(제 2그룹)들도 개발되고 있다.

본 논문에서는 이상에서 언급한 다양한 Z-소스 인 버터를 연구할 경우 어떤 토폴로지를 기초로 하여야 할 것인가에 대한 기초 자료를 제공하고 있다. 이를 위하여 표준형 부스트 율을 갖는 ZSI(제1그룹)과 부스 트율의 최대화를 추구한 ZSI(제2그룹)에 대해 듀티 비 (D)에 따라 각 ZSI의 효율과 출력전압을 비교하였다.

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

본 연구를 수행하기 위하여 전력전자 전용 PSIM시뮬 레이션을 하였다. 그 결과 제1그룹은 듀티 비(D)의 증 가(0.1~0.4)에 따른 출력전압과 효율의 변화는, 제2 그룹에 비하여 완만하게 증가 혹은 감소하는 특성을 보였다. 이에 반해 제2그룹은 특정 듀티 비(D)에서 전 압 부스트 율이 매우 컸으며, 이때 효율은 급격히 저하 되었다. 결과적으로 특정 듀티 비(D)에서의 전압 부스 트만을 고려할 경우에는 제2그룹이 더 유리하나, 효율 의 관점에서는 제1그룹이 훨씬 우수하였다. 종합적으 로, 입력 직류전류의 연속성(CCM)과 접지분할 그리 고 전압 스트레스의 관점까지 고려한 평가로는, 제1그 룹에 속한 CCM동작 Quasi ZSI 계열이 우수한 ZSI임 을 알 수 있었다.

2. 이 론

서론에서 이미 언급한 기본형 ZSI를 비롯한 다양한 ZSI에 대한 간단한 동작 원리와 등가 회로 그리고 전 압 부스트율 B 등을 다음과 같이 나타내었다.

2.1 기본형 Z-소스 인버터(ZSI)

그림 1. 기본형 Z-소스 인버터 Fig. 1. Typical Z-source inverter

그림 1은 L-C가 X-모양을 하고 있는 기본형 ZSI의 구조를 나타낸다. 이때 ZSI는 그 특성상 두 가지 모드 로 동작을 하게 되는데, ZSI의 상하 스위치가 단락이 되는 암 단락 모드(Shoot-through mode)와 비 암 단 락 모드(Non shoot-through mode, active mode)의 두 가지 모드로 동작 한다. 그림 2는 PWM 제어의 암 단 락구간을 설명하고 있으며, 암 단락의 기준이 되는

9

*V_{SH}*와 - *V_{SH}*의 값을 변조지수 M이라고 하고, 반대되 는 (1-*M*)을 암 단락 듀티 비(Shoot-through duty ratio) D라 한다.

그림 2. 암 단락 발생 원리 Fig. 2. The principle of shoot-through duty ratio

그림 3은 기본형 ZSI의 모드별 등가회로를 나타낸 다. ZSI는 비 암 단락 시에는 그림 3 (a)와 암 단락 시 에는 그림 3 (b)와 같이 동작을 한다.

- 그림 3. 기본형 ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 3. The equivalent circuit of the typical ZSI :
 - (a) Non Shoot-though mode ;

(b) Shoot-though mode

10

비 암 단락 모드의 경우 전류는 커패시터 C1, C2 와 정 방향으로 흐르게 되어 C1, C2를 충전한다. 인버터 의 암이 단락 상태인 shoot-through모드가 되면, 커패 시터 C1, C2는 인덕터 L1, L2를 통하여 방전되며, 이 때 전원 다이오드 는 오프상태가 된다. 기본형 ZSI의 부스트 율 B는 식 (1)과 같이 표현되고, 직류 단 스트 레스 V_{PV} 과 출력 $L_f - C_f$ 필터를 거치지 않은 출력전압 V_{OUT} 은 식 (2)와 같다. 여기서 D는 shoot- through 듀 티 비이고, M은 변조지수이다.

$$B = \frac{1}{1 - 2D} \tag{1}$$

$$V_{PN} = B \times V_{IN} , \quad V_{OUT} = V_{IN} \times M \times B$$
⁽²⁾

2.2 Quasi Z-소스 인버터(QZSI)

그림 4는 연속전류모드(CCM)로 동작하는 QZSI의 회로를 나타내고 있다. CCM 방식은 입력 직류전류가 연속적이므로 불연속전류모드(DCM)에 비하여 ZSI의 소자는 낮은 스트레스를 가지며 또한 기동시 Z-네트 워크로의 돌입 전류가 작다. 그림 5는 QZSI의 (a)비 암 단락 모드와 (b)암 단락 모드에 대한 등가 회로를 나타낸다.

이때 QZSI의 부스트 율 B는 기본형 ZSI의 경우와 동일하게 식 (1)과 같고, V_{PV} 과 출력 $L_f - C_f$ 필터를 거치기 전의 출력전압 V_{OUT} 역시 식 (2)와 같게 표현 된다.

그림 4. Quasi Z-소스 인버터(CCM) Fig. 4. Quasi Z-source inverter(CCM)

- 그림 5. Quasi ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 5. The equivalent circuit of the Quasi ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

2.3 Embedded Z-소스 인버터(EZSI)

그림 6은 직류 소스의 위치를 다르게 하여 각 소자 에 걸리는 부담을 줄여주어 제어 설계가 비교적 쉬운 EZSI의 회로를 나타내고 있다. EZSI는 비 암 단락 시 는 그림 7 (a)과 같이 동작하며, 암 단락 시에는 그림 7 (b)와 같다.

그림 6. Embedded Z-소스 인버터 Fig. 6. Embedded Z-source inverter

이 경우 EZSI의 전압 부스트 율 B는 식 (1)과 같으 며, *V_{PN}*과 출력 *L_f* - *C_f*필터를 거치기 전의 출력전압 *V_{OUT}*은 식 (2)로 표현된다.

- 그림 7. Embedded ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 7. The equivalent circuit of the Embedded ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

2.4 Series Z-소스 인버터(Series ZSI)

그림 8은 Series ZSI의 회로 구조를 나타내고 있다. Series ZSI는 비 암 단락 시에는 그림 9 (a)와 같은 동 작모드를 가지며, 암 단락 시에는 그림 9 (b)와 같은 동작모드를 보인다.

그림 8. Series Z-소스 인버터 Fig. 8. Series Z-source inverter

Series ZSI의 B는 식 (1)과 같고 V_{PN} 과 ZSI의 출력 $L_f - C_f$ 필터를 거치기 전의 출력전압 V_{OUT} 은 식 (2)로 표현된다.

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

Ø

- 그림 9. Series ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 9. The equivalent circuit of the Series ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

2.5 Improved Z-소스 인버터(IZSI)

그림 10은 Improved ZSI의 회로를 나타내고 있으며, 이 방식은 Z-임피던스 네트워크의 커패시터에 생기는 전압 스트레스와 충전 전류가 기본형 ZSI보다 낮다는 장점이 있다. 그림 11은 IZSI는 (a)비 암 단락시 등가 회로와 (b)암 단락시 등가회로를 나타내고 있다.

IZSI의 B는 식 (1)로 표현되고 V_{PN}과 출력 L_f − C_f 필터를 거치기 전의 출력전압 V_{OUT} 역시 식 (2)와 같다.

그림 10. Improved Z-소스 인버터 Fig. 10. Improved Z-source inverter

- 그림 11. Improved ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 11. The equivalent circuit of the Improved ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

2.6 Trans Z-소스 인버터(TZSI)

그림 12. Trans Z-소스 인버터 Fig. 12. Trans Z-source inverter

그림 12는 전압형 Trans ZSI의 회로를 나타내고 있 다. TSI는 Z-네트워크가 변압기와 커패시터로 구성되 고 있으며, 특정 듀티 비(D)에서 전압 부스트 율 B가 매우 높은 ZSI이다. 회로도의 L1이 변압기 권선의 1차 측, L2가 2차 측이며 변압기의 권선 비를 1:1로 하게 되면 기본형 ZSI와 B가 동일하므로, B를 고려하여 1 : 2의 비율로 설정하였다. 이 방식의 듀티 비(D)뿐만 아니라 권선 비를 조절하여 B를 최대화 할 수 있으나, 변압기의 누설인덕턴스 문제와 권선 비에 따라서 변

압기 크기가 커진다는 문제점이 있다. TSI는 비 암 단 락 시에는 그림 13 (a)와 같이 동작하고, 암 단락 시에 는 그림 13 (b)로 동작한다.

- 그림 13. Trans ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드
- Fig. 13. The equivalent circuit of the Trans ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

TSI의 전압 부스트 율 B는 식 (3)으로 표현 가능하 며, *V_{PN}*과 출력 *L_f*-*C_f*필터를 거치기 전의 출력전압 *V_{OUT}*은 기본형 ZSI와 같이 식 (2)로 표현된다.

$$B = \frac{1}{1 - (1 + n)D}$$
(3)

2.7 Extended Boost Z-소스 인버터 (exZSI)

그림 14. Extended Boost Z-소스 인버터 Fig. 14. Extended Boost Z-source inverter

그림 15. Extended Boost ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드 Fig. 15. The equivalent circuit of the Extended

Boost ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

exZSI의 B는 식 (4)로 표현되며, 이때 V_{PN}과 출력 L_f - C_f필터를 거치기 전의 출력전압 V_{OUT}은 식 (2)와 동일하다.

$$B = \frac{1}{(1-3D) \times (1-D)}$$
(4)

2.7 Switched Inductor Z-소스 인버터 (SL-ZSI)

그림 16. Trans Z-소스 인버터 Fig. 16. Trans Z-source inverter

SL-ZSI의 B는 식 (5)와 같으며, 이때 V_{PN}과 출력

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

B

듀티 비에 따른 단상 Z-소스 인버터의 효율과 출력 전압에 관한 연구

 $L_f - C_f$ 필터를 거치기 전의 출력전압 V_{OUT} 은 식 (2)와 같이 된다.

그림 17. Switched Inductor ZSI의 등가회로 : (a) 비 암단락 모드 ; (b) 암 단락 모드 Fig. 17. The equivalent circuit of the Switched Inductor ZSI : (a) Non Shoot-though mode ; (b) Shoot-though mode

$$B = \frac{1+D}{1-3D}$$

(5)

3. 결과 및 고찰

지금까지 살펴본 단상 ZSI의 듀티 비(D)에 따른 효 율과 출력전압을 비교하기 위하여, PSIM 시뮬레이션 을 하였다. 시뮬레이션 조건은 표 1과 표 2와 같다. 표 1은 TSI를 제외한 모든 ZSI에서 사용되는 파라미터이 며, 표 2는 TSI에만 적용되는 파라미터이다. TSI는 Z-네트워크가 변압기와 커패시터로 되어있기 때문에, 다른 ZSI와는 다르게 구성하였다. ZSI의 입력 직류전 압 150[V]조건에 대한 ZSI의 출력전압과 효율을 살펴 보았다. 전압 부스트 율 B가 보통인 ZSI 그룹(제1그 룹)과 B를 최대화한 ZSI 그룹(제2그룹)등 2 그룹으로 나누어 시뮬레이션의 결과를 비교하였다.

표	1. ZSI의	시스템 파리	비터
Table	1. System	parameters	of ZSI

V_{IN}		Z-Impedance Network		
		L	С	
150[V]		2[mH], 0.5[Ω] 1,000[uF]		
Tard	£	L-C Filter		
Load	J_{sw}	L_{f}	C_{f}	
R=30[Ω] 10[kHz]		2[mH]	20[uF]	

표 2. Trans ZSI의 시스템 파라미터 Table 2. System parameters of Trans ZSI

Transformer				L-C	Filter
Magnetizing L	Leakage L		R	L_{f}	$C_{\!f}$
2[mH]	100[nH]		0.5[Ω]	2[mH]	20[uF]
<i>V_{IN}</i> =150[V] Load			R=30[Ω]	f _{sw} =1()[kHz]

3.1 전압과 전류 파형

그림 18은 D=0.2에서의 기본형 ZSI의 *I_{IN}*, *V_{PN}*, *V_{OUT}* 파형을 나타내고 있다. *I_{IN}*은 과도상태에서 순간적으로 125[A]까지 증가하며, 정상상태에 도달하면 0~16[A] 범위로 불연속적인 변화를 보임을 알 수 있다. *V_{PN}*은 0[V]에서 253[V]사이를 펄스형태로 변화하고 있으며, 이때 *V_{OUT}*의 최대치는 200[V]임을 알 수 있다.

그림 18. D=0.2에 대한 기본형 ZSI의 $I_{I\!N}$, $V_{P\!N}$, V_{OUT} Fig. 18. $I_{I\!N}$, $V_{P\!N}$, V_{OUT} of typical ZSI for D=0.2

Journal of KIIEE, Vol.25, No.8, August 2011

14

그림 19는 D=0.2에서의 Quasi ZSI의 *I_{IN}*, *V_{PN}*, *V_{OUT}* 의 파형을 나타낸다. 이때 *I_{IN}*을 살펴보면 그림 18과는 다르게 연속전류 모드로 흐르고 있으며, *I_{IN}*의 순간 최 대치는 97[A]이나 일정 시간이 지나면 2.7~5.7[A]의 범위로 매우 낮은 전류가 흐른다. *V_{PN}*은 기본형 ZSI와 동일하게 0[V]에서 254[V]범위 내를 펄스형태로 변화 하고 있고, 이때 *V_{OUT}*의 최대치 역시 200[V]이다.

그림 19. D=0.2에 대한 QZSI의 I_{IN} , V_{PN} , V_{OUT} Fig. 19. I_{IN} , V_{PN} , V_{OUT} of QZSI for D=0.2

그림 20은 D=0.2에서의 Embedded ZSI의 I_{IN} , V_{PN} , V_{OUT} 과형을 나타낸다. 그림 20에서 보는 바와 같이 I_{IN} 의 파형은 그림 18에서 나타낸 기본형 ZSI와 같이 불연속 모드로 0~15[A]사이를 펄스형태로 흐르고 있다. 이때 기동 시 과도상태에서의 V_{PV} 은 약 300[V]로서 앞의 두 경우에 비하여 낮다는 것을 알 수 있다. 정상상태의 V_{PV} 은 0[V]에서 254[V]범위 내를 펄스형태로 변화하고 있으며, 출력전압 V_{OUT} 의 최대치는 200[V]이다.

그림 20. D=0.2에 대한 EZSI의 *I_{IN}*, *V_{PN}*, *V_{OUT}* Fig. 20. *I_{IN}*, *V_{PN}*, *V_{OUT}* of EZSI for D=0.2

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

그림 21은 D=0.2에 대한 Series ZSI의 I_{IN}, V_{PN}, V_{OUT} 파형을 나타내고 있다. I_{IN}은 그림 18과 그림 20 과 비교하여 반대로 뒤집힌 불연속 전류 파형이다. 과 도상태에서의 V_{PN}는 약 285[V]인데 앞의 경우들에 비 하여 낮다는 것을 알 수 있다. 정상상태에서의 V_{PN}은 앞의 경우들과 동일하게 0[V]에서 254[V]범위를 변화 하는 펄스형태이며, 출력전압 V_{OUT}의 최대 값은 앞의 경우와 동일하게 200[V]정도이다.

그림 21. D=0.2에 대한 Series ZSI의 I_{IN} , V_{PN} , V_{OUT} Fig. 21 I_{IN} , V_{PN} , V_{OUT} of Series ZSI for D=0.2

그림 22는 Improved ZSI에 대한 D=0.2에서의 *I_{IN}*, *V_{PN}*, *V_{OUT}*의 파형을 나타내고 있다. 그림 22에서 보 는 바와 같이 *I_{IN}*, *V_{PN}* 그리고 *V_{OUT}*의 최대치는 그 림 21의 Series ZSI의 경우와 거의 동일함을 알 수 있다.

그림 22. D=0.2에 대한 IZSI의 I_{IN} , V_{PN} , V_{OUT} Fig. 22 I_{IN} , V_{PN} , V_{OUT} of IZSI for D=0.2

B

그림 23은 D=0.2에 대한 Trans ZSI의 *I_{IN}*, *V_{PN}*, *V_{OUT}* 의 파형을 나타낸다. *I_{IN}*은 100[A]의 과도상태를 거쳐서 0[A]~20[A]사이로 변하는 펄스파형이고, *V_{PN}* 은 0[V]~374[V]사이로 변하는 펄스전압이다. 정상상 태에서의 출력전압 *V_{OUT}*의 최대치는 290[V]인데 앞 의 방법들과 비교하여 높다는 것을 알 수 있다.

그림 23. D=0.2에 대한 TZSI의 I_{IN}, V_{PN}, V_{OUT} Fig. 23 I_{IN}, V_{PN}, V_{OUT} of TZSI for D=0.2

그림 24는 D=0.2에 대한 Extended boost ZSI의 I_{IN} , V_{PN} , V_{OUT} 과형을 나타내고 있다. 그림 24에서 보는 바 와 같이 I_{IN} 은 과도상태에서 100[A]와 40[A]의 과도상 태를 거쳐서, 8[A]~20[A]범위 내에서 연속전류모드 (CCM)로 흐르게 되는데, 이는 exZSI가 근본적으로 QZSI의 Z-네트워크를 기본으로 하고 있기 때문이다. 이때 V_{PN} 은 0[V]~433[V]사이로 변화하는 펄스형태 이며, 출력전압 V_{OUT} 의 최대치는 326[V]로 매우 높음 을 알 수 있다.

그림 24. D=0.2에 대한 exZSI의 I_{IN} , V_{PN} , V_{OUT} Fig. 24 I_{IN} , V_{PN} , V_{OUT} of exZSI for D=0.2

16

그림 25는 D=0.2에서의 Switched inductor ZSI의 *I_{IN}*, *V_{PN}*, *V_{OUT}* 파형을 나타낸다. 그림 25에서 보는 바 와 같이 *I_{IN}*은 기동시의 다른 방식에 비하여 나쁜 과도 특성을 보임을 알 수 있다. 즉 200[A]에 도달하는 전 류가 발생한 후에100[A]에서 30[A]사이를 불연속적으 로 흐르는 전류가 연속적으로 존재하며, 정상상태에 도달하여서는 0[A]~33[A]사이의 펄스전류가 흐른다. *V_{PN}*은 0[V]~412[V]사이를 분포하는 펄스형태이며 이때 *V_{OUT}*의 최대치는 324[V]로 높다.

그림 25. D=0.2에 대한 SL-ZSI의 I_{IN} , V_{PN} , V_{OUT} Fig. 25. I_{IN} , V_{PN} , V_{OUT} of SL-ZSI for D=0.2

3.2 출력전압과 효율

Z-소스 인버터의 효율 계산을 위하여, 식 (6)으로 나 타낸 효율의 정의식이 사용되었다. 여기서 입력은 Z-소스 인버터의 직류입력 전압(V_{IN})과 전류(I_{IN})의 곱이 며, 출력은 Z-소스 인버터의 교류 출력전압(v_{out})과 출 력전류(i_{out})의 곱으로 나타내진다.

효율 efficiency [%]=
$$\frac{output}{input} = \frac{v_{out} \times i_{out}}{V_{IN} \times I_{IN}}$$
 (6)

표 3과 표 4는 입력 직류전압 150[V]에 대한 제1그 룹의 출력전압 및 효율을 비교 한 것이다. 표 3, 4를 보 면, 제1그룹에 속하는 ZSI는 모든 듀티비(D)에 대하여 출력전압 및 효율이 서로 비슷함을 알 수 있다. 이는 제1그룹을 구성하는 기본형 ZSI, EZSI, QZSI, Series ZSI, IZSI는 서로 비슷한 구조를 가지고 있으며, 또한

동일한 B를 가지기 때문일 것이다.

표	3. 듀티비	(D)에 따른	· 출력전압(RMS)	비교(제1
	그룹)			

Table 3. Comparison of the output voltage(RMS) according to duty ratio(D)(Group-1)

				U.
Duty ratio D	0.1	0.2	0.3	0.4
ZSI	118.02	138.62	177.49	279.88
QZSI	118.10	138.87	178.01	280.13
EZSI	118.00	138.59	177.45	279.35
Series ZSI	118.00	138.59	177.45	279.35
IZSI	118.00	138.59	177.45	279.35

다의 · [\/]

4. 듀티비 (D)에 따른 효율 비교(제1그룹) 퓨 Table 4. Comparison of the efficiency according to duty ratio(D)(Group-1)

		-
E LO	· [C	1.
		/ol

Duty ratio D	0.1	0.2	0.3	0.4
ZSI	97.45	96.63	94.56	86.21
QZSI	97.64	96.75	94.74	86.21
EZSI	97.47	96.33	94.57	86.21
Series ZSI	97.84	96.89	94.94	86.16
IZSI	97.84	96.89	94.94	86.16

그림 26은 이를 그래프로 정리한 것이며 듀티 비(D) 의 변화에 따라 출력전압과 효율의 관계로 나타내었 다. 그림 26에서 보는 바와 같이 입력 직류전압 150[V]

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

조건에 대하여, D=0.1~0.3범위에서는 출력전압과 효 율이 그다지 큰 차이가 없음을 알 수 있다.

그러나 D=0.4에서는 출력전압이 280[V]로 1.86배 정 도 급증되며 이때 효율은 86.21%이고 D=0.1인 경우 에 비하여 121% 정도 감소됨을 보인다. 결론적으로 제 1그룹은 듀티 비 D=0.1~0.4의 넓은 범위로 동작이 가 능하면서 출력전압과 효율은 비교적 안정하다 할 수 있다.

표 5와 표 6은 제2그룹에 대한 듀티 비(D)에 따른 출력전압과 효율을 비교한 것이다. 제1그룹과는 다르 게, 제2그룹은 D=0.1에서만 출력전압과 효율이 서로 비슷할 뿐 D=0.2부터는 현격한 차이를 보이고 있다. 그림 27은 표 5와 6을 그래프로 나타낸 것이다. 그림 에서 보는 바와 같이 제2그룹은 D=0.2를 지나면 효율 이 급격히 저하되며 D=0.3에서는 약 40[%]정도를 보 이고 있다. 한편 효율이 급격히 저하되는 D=0.3에서의 출력전압은 300[V]~400[V]정도이며, 듀티 비(D)가 이보다 더 큰 경우, 출력전압은 30~60[V] 범위에서 최저치를 갖는다.

B를 최대화하기 위하여 Z-네트워크에 L과 C 또는 변압기 등을 추가하게 되면, 듀티 비(D)가 0.3보다 큰 경우부터는 전체 ZSI의 효율이 급격하게 저하되며. B 의 결과가 "-"로 되어 출력 전압이 제대로 출력이 되 지 않고 급격히 감소된다. 듀티 비(D)에 따른 출력전 압의 증가율을 살펴보면, 변압기 권선비 조절이 가능 한 TSI가 396.3[V]로 가장 크며, SL-ZSI, exZSI 순으 로 낮게 된다. D=0.4에서의 최저 출력전압 역시 TSI가 40[V]로 가장 작으며, 그 다음에 exZSI, SL-ZSI 순으 로 약간 크다. 이로부터 듀티 비(D)에 따른 출력전압 의 변동 폭이 가장 큰 ZSI는 TSI임을 알 수 있다. 한 편 효율의 관점에서 살펴보면, TSI는 제2그룹의 다른 2가지 형태에 비하여 비교적 높다는 것을 알 수 있다. 그림 26과 그림 27에서 보는 바와 같이 본 연구에서 다루는 단상 ZSI는 출력전압이 증가되기 시작하는 듀 티 비(D)에서 효율이 감소되기 시작하고, 출력전압이 가장 높은 듀티 비(D)에서는 효율이 급격히 낮아지는 특성을 보인다. B의 관점에서 제1그룹을 살펴보면 모 든 듀티 비(D)의 범위에서 비교적 우수한 효율을 가짐 을 알 수 있다. 한편 효율의 관점에서 제2그룹은 최대

출력전압을 발생하는 듀티 비(D)에서 효율은 급격히 저하되므로, 그보다 더 낮은 출력전압을 발생하는 듀 티 비(D)에서 동작하도록 해야 한다.

표 5. 듀티비 (D)에 따른 출력전압(RMS) 비교 (제2그룹)

Table 5. Comparison of the output voltage(RMS) according to duty ratio(D)(Group-2)

단위 : [V]

Duty ratio D	0.1	0.2	0.3	0.4
TSI	132.95	200.59	396.28	39.95
exZSI	140.97	227.31	343.51	45.92
SL-ZSI	142.79	226.09	364.32	64.43

표 6. 듀티비 (D)에 따른 효율 비교(제2그룹) Table 6. Comparison of the efficiency according to duty ratio(D)(Group-2)

단위 : [%]

Duty ratio D	0.1	0.2	0.3	0.4
TSI	96.60	93.50	52.20	0.20
exZSI	93.01	86.02	31.79	0.27
SL-ZSI	94.22	87.61	36.93	0.48

끝으로 불연속 전류모드(DCM)로 동작하는 기본형 ZSI와 연속 전류모드(CCM)로 동작하는 QZSI의 입력 직류전류파형을 그림 28에 비교하였다. DCM 방식과 CCM 방식의 가장 큰 차이점은 입력 직류전류의 파형 에 있다. 그림에서 보는 바와 같이 DCM 방식은 돌입 전류가 이론상 125[A]까지 증가한다. 정상상태에서도 0~20[A]범위로 변동이 심하지만, CCM 방식의 경우 에는 돌입 전류가 순간적으로 97[A]정도이며, 정상상 태의 전류는 3~6[A]로 변화폭이 매우 안정적임을 알 수 있다.

입력 직류전류와 접지분할 그리고 전압 스트레스의 관점까지 고려하여 종합적으로 평가해 보면, 제1그룹 에 속한 Quasi ZSI 계열이 가장 우수한 ZSI임을 알 수 있었다.

그림 28. 기본형 ZSI와 QZSI의 입력 직류전류의 파형비교 : (a) 입력 직류 전류 ; (b) 상세 파형 Fig. 28. Comparison of the input DC current waveform of typical ZSI and QZSI : (a)Input DC current ; (b) Detailed waveform

4. 결 론

본 논문에서는 전압 부스트 율 B의 관점에서, 8가지 단상 ZSI를 전압 부스트 율 B가 보통의 값을 갖는 ZSI (제1그룹)과 전압 부스트 율 B를 최대화한 ZSI(제2그 룹)으로 구분하여, 그 동작 원리와 등가회로 그리고 전압 부스트 율 B에 대하여 고찰하였다. 이를 위하여

PSIM 시뮬레이션을 하였으며, 듀티 비 (D)에 따른 8 가지 ZSI의 출력전압 및 효율을 비교 분석하였다.

입력 직류전압 150[V]의 조건하에서 듀티 비에 따른 제1그룹의 출력전압은 매우 높지는 않지만 효율은 90[%]이상이었으며, 듀티 비(D)가 증가됨에 따라 효 율과 출력전압이 제2그룹에 비하여 급격한 변화를 보 이지는 않는다. 최근에 개발된 제2그룹은, 특정 듀티 비(D)에서 출력전압은 매우 높지만 이에 따라 입력 전 류의 상승폭이 증가하여 전체 효율은 제1그룹에 비하 여 매우 낮고 또한 Z-네트워크의 복잡성으로 인해 ZSI의 크기가 커지는 단점이 있다. 제1그룹의 ZSI는 듀티 비(D)에 따라 모두 비슷한 출력전압과 효율특성 을 보였으나, 제2그룹의 ZSI는 서로 간에 다른 특성을 보였다. 제1그룹과 제2그룹 모두 출력전압이 급증되 는 듀티 비(D)에서는 효율이 급격이 감소되는 특성을 보였다.

끝으로 입력 직류전류와 접지문제 그리고 전압 스트 레스까지 고려하여 종합적으로 살펴본 결과, 제1그룹 에 속한 CCM으로 동작하는 Quasi ZSI계열이 가장 우 수한 특성을 보임을 알 수 있었다.

감사의 글

이 논문 또는 저서는 2011년 교육과학기술부(지역거점 연구단육성사업/바이오하우징연구사업단)와 바이오하우징 연구소 및 교육과학기술부(지역거점연구단육성사업/바이오 하우징연구사업단) 및 지식경제부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한연구과제입니다. (No.2007-P-EP-HM-E-09-0000)

References

- Y. Huang, M. Shen, and F. Z. Peng, "A Z-Source Inverter for Residential Photovoltaic Systems" in Proc. IPEC'05, (Niigata), Japan, 2005. pp. 1426–1431.
- [2] 김세진, 정영국, 임영철, 양승학, "전압 이득과 변조지수 제어에 의한 3상 Z-소스 인버터의 출력 교류 전압 제 어", 전기학회논문지, 59권, 11호 pp.1996-2005, 2010.
- (3) F. Z. Peng, "Z-Source Inverter," IEE Trans. Ind. Applicat., Vol. 39, No.2, pp. 504–510, March/April 2003.
- [4] J. Anderson and F. Z. Peng, "A Class of Quasi-Z-Source Inverters,"" in Conf. Rec. of IEE IAS'08, 2008, pp. 1 - 7.
- (5) Poh Chiang Loh, Feng Gao, and F. Blaabjerg, "Embedded EZ-Source Inverters", IEEE Trans. Ind. Applicat., Vol. 46,

조명·전기설비학회논문지 제25권 제8호, 2011년 8월

pp. 256-267, Jan/Feb 2010.

- [6] Jukui Wei, Yu Tang and Shaojun Xie, "Grid-Connected PV System Based on the Series Z-Source Inverter", in Proc. IGEA 2010, pp.532–537.
- [7] T. Yu, X. Shaojun, Z. Chaohua, and X. Zegang, ""Improved Z-Source Inverter with Reduced Z-Source Capacitor Voltage Stress and Soft-Start Capability,"" IEE Trans. Power Electron., vol. 24, no. 2, pp. 409 - 415, Feb. 2009.
- [8] W. Qian, F. Z. Peng and H. Cha, "Trans-Z-Source Inverters", in Conf. Rec. of IPEC'10, pp.1874–1881, 2010.
- [9] C. J. Gajanayake, L. F. Lin, G. Hoay, S. P. Lam and S. L. Kian, "Extended Boost Z-Source Inverters", IEE Trans. Power Electron. Vol.25, pp.2642–2652, Oct 2010.
- [10] Z. Mao, Y. Kuna and L. L. Fang, "Switched Inductor Z-Source Inverter", IEE Trans. Power Electron. Vol.25, pp. 2150–2158, Aug 2010.

1985년 12월 18일생. 2011년 호남대학교 전기공학과 졸업. 2011년~현재 전남대 학교 대학원 전기공학과 석사과정. Tel:(062)530-0852 E-mail:Hongsp@ejnu.net

정영국(鄭榮國)

홍승표(洪承杓)

1963년 11월 10일생. 1986년 전남대학교 공대 전기공학과 졸업. 1988년 동 대학원 전기공학과 졸업(석사). 1996년 동 대학원 전기공학과 졸업(박사). 2000년 일본 오카야마대학교 연구방문. 현재 대불대 학교 융합기술학부 부교수.

Tel: (061)469-1263 Fax: (061)469-1353 E-mail: jyg@db.ac.kr

임영철(任永徹)

1953년 4월 23일생. 1975년 전남대학교 전기공학과 졸업. 1977년 고려대학교 대학원 전기공학과 졸업(석사). 1990년 동 대학원 전기공학과 졸업(박사). 1997년 호주 모나시 대학교 Visiting Scholar. 1998~2007년 산업자원부 지정 전남대

학교 고품질 전기전자부품 및 시스템 연구센터 소장. 현재 전남대학교 전기공학과 교수. Tel: (062)530-1743

E-mail : yclim@chonnam.ac.kr

