DOI QR코드

DOI QR Code

Fabrication of Porous Cu by Freeze-Drying Method of CuO-Camphene Slurry

CuO-Camphene 슬러리의 동결건조에 의한 Cu 다공체 제조

  • Kim, Min-Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Chang, Si-Young (Department of Materials Engineering, Korea Aerospace University) ;
  • Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
  • 김민수 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 장시영 (한국항공대학교 항공재료공학과) ;
  • 석명진 (강원대학교 재료금속공학과)
  • Received : 2011.05.24
  • Accepted : 2011.06.23
  • Published : 2011.08.28

Abstract

In order to fabricate the porous metal with controlled pore characteristics, unique processing by using metal oxide powder as the source and camphene as the sublimable material is introduced. CuO powder was selected as the source for the formation of Cu metal via hydrogen reduction. Camphene-based CuO slurry, prepared by milling at $47^{\circ}C$ with a small amount of dispersant, was frozen at $-25^{\circ}C$. Pores were generated subsequently by sublimation of the camphene. The green body was hydrogen-reduced at $200^{\circ}C$ for 30 min, and sintered at $500-700^{\circ}C$ for 1 h. Microstructural analysis revealed that the sintered Cu showed aligned large pore channels parallel to the camphene growth direction, and fine pores are formed around the large pore. Also, it showed that the pore size was controllable by the slurry concentration.

Keywords

References

  1. K. Ishizaki, S. Komarneni and M. Nanko: Porous Materials, Kluwer Academic Publishers, Dordrecht (1998).
  2. M.-J. Suk and Y.-S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
  3. J. S. Park, S. K. Hyung, S. Suzuki and H. Nakajima: Acta Mater., 55 (2007) 5646. https://doi.org/10.1016/j.actamat.2007.06.022
  4. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  5. T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 85 (2002) 2151. https://doi.org/10.1111/j.1151-2916.2002.tb00426.x
  6. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 88 (2005) 1108. https://doi.org/10.1111/j.1551-2916.2005.00176.x
  7. Y.-H. Koh, J.-H. Song, E.-J. Lee and H.-E. Kim: J. Am. Ceram. Soc., 89 (2006) 3089. https://doi.org/10.1111/j.1551-2916.2006.01222.x
  8. H. J. Hwang and J.-W. Moon: J. Korean Ceram. Soc., 41 (2004) 229 (Korean). https://doi.org/10.4191/KCERS.2004.41.3.229
  9. K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 1859.
  10. Gmelins Handbuch der Anorganischen Chemie, Cu. 8 Aufl., System-Nummer 60, Verlag Chemie GmbH, Weinheim (1958) 84.
  11. B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537. https://doi.org/10.1016/j.scriptamat.2007.11.006

Cited by

  1. with Nano-Sized Cu Dispersions vol.23, pp.1, 2013, https://doi.org/10.3740/MRSK.2013.23.1.067
  2. Effect of Solidification Condition of Sublimable Vehicles on the Pore Characteristics in Freeze Drying Process vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.366