DOI QR코드

DOI QR Code

Effects of Oscillating Flow on the Dynamic Behavior of an Artificial Sensory Hair

인공 감각모의 동적 거동에 미치는 진동유동의 영향

  • Park, Byung-Kyu (Institute of Advanced Machinery and Design, Seoul Nat'l Univ.) ;
  • Lee, Joon-Sik (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 박병규 (서울대학교 정밀기계설계공동연구소) ;
  • 이준식 (서울대학교 기계항공공학부)
  • Received : 2011.05.26
  • Accepted : 2011.06.10
  • Published : 2011.08.01

Abstract

Filiform hairs that respond to movements of the surrounding medium are the mechanoreceptors commonly found in arthropods and vertebrates. The hairs function as a sensory system for perceiving information produced by prey, predators, or conspecifics. A mathematical model is proposed, and the parametric analyses for the response of artificial filiform hair are conducted to design and predict the performance of a microfabricated device. The results for the Cytop hair, one of the most popular polymer optical fibers (POFs), show that the fundamental mode has a dominant effect on the hair behavior in an oscillating medium flow. The dynamic behavior of sensory hair is also dependent on the physical dimensions such as length and diameter. It is found that the artificial hair with a high elastic modulus does not show a resonance in the biologically important frequency range.

주위 매질의 움직임에 반응하는 섬유상 감각모는 대부분의 생물체에 존재하여 먹이, 침입자, 또는 동족 여부를 감지하는 역할을 한다. 이 기능을 모방한 인공 감각모를 설계 제작하기 위하여 유연 감각모를 기초로 한 수학모델을 제안하고, 작동영역에서의 응답특성을 파악하기 위하여 매개변수 해석을 수행하고 각 인자들의 영향을 고찰하였다. 유동 감각모의 변위를 일반화 좌표 및 고유 진동모드로 나타낸 결과, 탄성계수가 비교적 큰 Cytop 감각모의 경우 고유진동의 기본모드가 지배적인 것으로 나타났다. 주어진 유동 중에 있는 감각모의 동적거동은 형상에 크게 의존하였다. 또한 탄성계수가 큰 인공 감각모에서는 생물학적으로 중요한 주파수 범위 내에서 공진현상은 나타나지 않았다.

Keywords

References

  1. Liu, C., 2007, Micromachined Biomimetic Artificial Haircelll Sensors, Bioinsp. & Biomim. Vol. 2, s162-9. https://doi.org/10.1088/1748-3182/2/4/S05
  2. Barth, F. G., Humphrey, J. A. C. and Secomb, T. W., 2003, Sensors and Sensing in Biology and Engineering, Springer-Verlag.
  3. Bathellier, B., Barth, F. G., Albert, J. T. and Humphrey, J. A. C., 2005, Viscosity-Mediated Motion Coupling Between Pairs of Trichobothria on the Leg of the Spider Cupiennius Salei, J. Comp. Physiol. A, Vol. 191, pp. 733-746. https://doi.org/10.1007/s00359-005-0629-5
  4. Shimozawa, T., Kumagai, T. and Baba, Y., 1998, "Structural Scaling and Functional Design of the Cercal Wind-Receptor Hairs of a Cricket," J. Comp. Physiol., A, Vol. 183, No. 2, pp. 171-186. https://doi.org/10.1007/s003590050245
  5. Krijnen, G. J. M., Dijkstra, M., van Baar J. J., Shankar, S. S., Kuipers, W. J., de Boer, R. J. H., Altpeter, D., Lammerink, T. S. J. and Wiegerink, R., 2006, MEMS Based Hair Flow-Sensors as Model Systems for Acoustic Perception Studies, Nanotechnology, Vol. 17, S84-89. https://doi.org/10.1088/0957-4484/17/4/013
  6. Humphrey, J. A. C., Devarakonda, R., Iglesias, I. and Barth, F. G., 1993, "Dynamics of Arthropod Filiform Hairs. I. Mathematical Modeling of the Hair and Air Motions," Philos. Trans. Roy. Soc. Lond., Vol. B340, pp. 423-444.
  7. Newman, J. N., 1977, Marine Hydrodynamics, MIT Press.
  8. Kim, C-.J., 2007, An Introduction to the Numerical Analysis, 3rd ed., Pan Korea Book Corporation.
  9. Fuard, D., Tzvetkova-Chevolleau, T., Decossas, S., Tracqui, P. and Schiavone, P., 2008, "Optimization of PDMS Substrates for Studying Cellular Adhesion and Motility," Microelectronic Engineering, Vol. 85, pp. 1289-1293. https://doi.org/10.1016/j.mee.2008.02.004
  10. Telionis, D. P., 1981, Unsteady Viscous Flows, Springer-Verlag.
  11. Kays, W.M. and Crawford, M.E., 1980, Convective Heaat and Mass Transfer, 2nd ed., McGraw Hill.
  12. Park, B.K. and Lee, J.S., 2011, Dynamic Behavior of Flexible Sensory Hair in an Oscillating Flow, Journal of Mechanical Science and Technology, Submitted.
  13. Barth, F. G., Wastl, U., Humphrey, J. A. C. and Devarakonda, R., 1993, "Dynamics of Arthropod Filiform Hairs II. Mechanical Properties of Spider Trichobothria," Philos. Trans., Biol. Sci., Vol. 340, No. 1294, pp. 445-461. https://doi.org/10.1098/rstb.1993.0084
  14. Chen, N., Tucker, C., Engel, J., M., Yang, Y., Pandya, S. and Liu, C., 2007, Design and Characterization of Artificial Haircell Sensors for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity, J. of MEMS, Vol. 16, No. 5, pp. 999-1014. https://doi.org/10.1109/JMEMS.2007.902436
  15. Barth, F. G., Humphrey, J. A. C. and Voss, K., 2001, "The Motion Sensing Hairs of Arthropods: Using Physics to Understand Sensory Ecology and Adaptive Evolution," Ecology of Sensing, F. G. Barth and A. Schmid, Eds., Springer-Verlag.
  16. Casas, J. and Simpson, S. J., 2008, Advances in Insect Physiology - Insect Mechanics and Control, Vol. 34, Elsevier.
  17. Barth, F. G., 2004, "Spider Mechanoreceptors," Curr. Opin. Neurobiology, Vol. 14, pp. 415-422. https://doi.org/10.1016/j.conb.2004.07.005