DOI QR코드

DOI QR Code

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기의 동적특성 평가

Dynamic Characterization of Passive Flow-Rate Regulator Using Pressure-Dependent Autonomous Deflection of Parallel Membrane Valves

  • 도일 (한국과학기술원 바이오및뇌공학과) ;
  • 조영호 (한국과학기술원 바이오및뇌공학과)
  • Doh, Il (Dept. of Bio and Brain Engineering, KAIST) ;
  • Cho, Young-Ho (Dept. of Bio and Brain Engineering, KAIST)
  • 투고 : 2011.02.18
  • 심사 : 2011.06.01
  • 발행 : 2011.08.01

초록

본 연구에서는, 미소유체시스템 상에서 정밀한 유체 제어를 위해 입력압력이 변하여도 일정한 유량을 유지할 수 있는 수동형 유량제어기를 개발함에 있어, 주기적으로 변화하는 압력에 대한 유량제어기의 동적특성을 평가하였다. 압력 변화의 주기보다 짧은 시간 내에 유량을 측정하기 위하여 입자영상속도계(Particle Image Velocimetry, PIV) 방법을 이용하였다. 지름이 $0.7{\mu}m$ 인 형광입자가 담긴 탈이온수를 유량제어기에 공급하고, 펄스레이저와 형광현미경을 이용하여 $10{\mu}s$ 간격의 연속된 사진을 얻고 이를 분석하여 유량제어기를 통과한 후의 유체의 속도를 측정하였다. 개발된 유량제어기는 20kPa 과 50kPa 사이를 주기적으로 변화하는 60Hz 의 압력 하에서 0.194${\pm}$0.014m/s의 일정한 유속을 유지함을 실험적으로 확인하였다. 압력의 주파수를 1~60Hz 까지 변화시켜가며 수행한 실험에서도 유량제어기는 압력의 주파수에 상관없이 $5.82{\pm}0.29\;{\mu}l/s$ 의 일정한 유량 공급이 가능함을 확인하였다.

We performed a dynamic characterization of passive flow-rate regulators, which compensate for inlet pressure variation and maintain a constant flow rate for precise liquid control in microfluidic systems. To measure the flow rate for a short time, much less than the period of the dynamic inlet pressure, we use the particle image velocimetry (PIV) method. DI water containing fluorescent beads with a $0.7-{\mu}m$ diameter was supplied to the flow-rate regulators, and two successive images of the particles were taken by a pulse laser and a fluorescent microscope to measure the flow velocity. For a dynamic inlet pressure of frequency 60 Hz, the flow velocity was constant with an average of 0.194 ${\pm}$ 0.014 m/s as the inlet pressure varied between 20 kPa to 50 kPa. The flow-rate regulators provided a constant flow rate of $5.82{\pm}0.29\;{\mu}l/s$ in the frequency range of the inlet pressure from 1 Hz to 60 Hz.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. Doh, I. and Cho, Y.-H., 2009, "A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves," Transactions of the Korean Society of Mechanical Engineers A, Vol. 33, pp. 573-576. https://doi.org/10.3795/KSME-A.2009.33.6.573
  2. Rollier, A.S., Faucher, M., Legrand, B., Collard, D. and Buchaillot, L., 2006, "Electrostatic Actuators Operating in Liquid Environment: Suppression of Pull-in Instability and Dynamic Response," DTIP of Mems and Moems, Stresa, Italy.
  3. Fan, Z., Chen, J., Zou, J., Bullen, D., Liu, C. and Delcomyn, F., 2002, "Design and Fabrication of Artificial Lateral Line Flow Sensors," Journal of Micromechanics and Microengineering, Vol. 12, pp. 655-661. https://doi.org/10.1088/0960-1317/12/5/322
  4. Chen, J., Fan, Z., Zou, J. and Engel, J., 2003, "Two- Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies," Journal of Aerospace, Vol. 16, pp. 85-97. https://doi.org/10.1061/(ASCE)0893-1321(2003)16:2(85)
  5. Onofri, F., 2006, "Three Interfering Beams in Laser Doppler Velocimetry for Particle Position and Microflow Velocity Profile Measurements," Applied optics, Vol. 45, pp. 3317-3324. https://doi.org/10.1364/AO.45.003317
  6. Kim, B.J., Liu, Y.Z. and Sung, H.J., 2004, "Micro PIV Measurement of Two-Fluid Flow with Different Refractive Indices," Measurement Science and Technology, Vol. 15, pp. 1097-1103. https://doi.org/10.1088/0957-0233/15/6/008
  7. Wang, H. and Wang, Y., 2009, "Measurement of Water Flow Rate in Microchannels Based on the Microfluidic Particle Image Velocimetry," Measurement, Vol. 42, pp. 119-126. https://doi.org/10.1016/j.measurement.2008.04.012
  8. White, F.M., 1991, Viscous Fluid Flow, New York: McGraw Hill.
  9. KIM, J. and JU, Y.S., 2008, "Brownian Microscopy for Simultaneous in situ Measurements of the Viscosity and Velocity Fields in Steady Laminar Microchannel Flows," Journal of Microelectromechanical Systems, Vol. 17, pp. 1135-1143. https://doi.org/10.1109/JMEMS.2008.927746
  10. Lee, G.-B., Chang, C.-C., Huang, S.-B. and Yang, R.-J., 2006, "The Hydrodynamic Focusing Effect Inside Rectangular Microchannels," Journal of Micromechanics and Microengineering, Vol. 16, pp. 1024-1032. https://doi.org/10.1088/0960-1317/16/5/020
  11. Young, W. and Budynas, R., 2001, Roark's Formulas for Stress & Strains, McGraw Hill.
  12. Chang, T., 2000, "on the Natural Frequency of a Rectangular Isotropic Plate in Contact With Fluid," Journal of Sound and Vibration, Vol. 236, pp. 547-553. https://doi.org/10.1006/jsvi.2000.2955