DOI QR코드

DOI QR Code

Study on Heat Transfer Characteristics for Single-phase Flow in Rectangular Microchannels

사각 마이크로 채널의 단상 유동 열전달 특성 연구

  • Mun, Ji-Hyun (Clean Process and System Engineering, Univ. of Science and Technology) ;
  • Kim, Seon-Chang (Energy System R&D Group, Korea Institute of Industrial Technology)
  • 문지현 (과학기술연합대학원대학교) ;
  • 김선창 (한국생산기술연구원 에너지시스템연구그룹)
  • Received : 2010.10.20
  • Accepted : 2011.07.18
  • Published : 2011.09.01

Abstract

In this study, experiments were carried out to investigate the convective heat transfer characteristics of rectangular microchannels. The sample used in the experiments contained 20 rectangular microchannels in parallel. The channels had a hydraulic diameter of 700 ${\mu}m$. Distilled water was used as the working fluid. In the experiments, the Reynolds number ranged from 400 to 800, heat flux ranged from 35 to 85 kW/$m^2$, and the inlet fluid temperature was $20^{\circ}C$. As a result, the convective heat transfer coefficient increased upon increasing the Reynolds number and ranged from 4.6 to 6.4 kW/$m^2/^{\circ}C$ in the thermally fully developed region. Moreover, the higher the Reynolds number, the longer the thermal entry length in the rectangular microchannels. However, it was observed that a variable heat flux did not affect the thermal entry length. In conclusion, a correlation was proposed to indicate the heat transfer characteristics in a thermally fully developed region.

본 연구에서는 사각 마이크로 채널의 열전달 특성을 연구하기 위한 실험을 수행하였다. 실험에 사용된 시료의 채널 수력직경은 $700{\mu}m$이며, 채널의 개수는 20개이다. 작동유체는 물이며, 작동유체의 입구 온도는 $20^{\circ}C$ 이다. 실험 변수는 Reynolds 수 400 ~ 800 및 열 유속 35 ~ 85 kW/$m^2$ 이다. 결과로, Reynolds 수가 큰 경우일수록 대류 열전달 계수가 증가하는 것으로 나타났으며, 열적으로 완전히 발달 된 영역에 대하여 대류 열전달 계수는 약 4.6 ~ 6.4 kW/$m^2^{\circ}C$로 나타났다. 또한, 사각 마이크로 채널에서의 열적 입구길이는 Reynolds 수가 커지는 경우일수록 길어지는 것을 알 수 있었으나, 열 유속의 변화는 입구길이에 영향을 미치지 않는 것으로 나타났다. 본 연구의 결과로 완전히 발달된 유동영역에 대하여 사각 마이크로 채널의 열적 특성을 나타내기 위한 Nusselt 수 상관식을 제안하였다.

Keywords

References

  1. Kim, D. J., Yoon, S. H. and Choi, J. S., 2009, "Development of Microchannel Heat Exchanger for Liquefied Natural Gas Plants," Proceeding of SAREK Winter Annual Conference, 2009, pp. 57-61.
  2. Bae, C. S. and Kim, K. H., 2010, "Improve the Efficiency of Transportation Energy," Journal of the KSME, Vol. 50, No. 7, pp. 41-46.
  3. Peng, X. F. and Peterson, G. P., 1995, "Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures," International Journal of Heat and Mass Transfer, Vol. 39, No. 12, pp. 2599-2608.
  4. Peng, X. F. and Peterson, G. P. 1994, "The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids through Rectangular Microchannels," International Journal of Heat and Mass Transfer, Vol. 38, No. 4, 755-758.
  5. Lee, J. and Mudawar, I. 2007, "Assesment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels," International Journal of Heat and Mass Transfer, Vol. 50, pp. 452-463. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001
  6. Qu, W. and Mudawar, I., 2002, "Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink," International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549-2565. https://doi.org/10.1016/S0017-9310(01)00337-4
  7. Shen, S., Xu, J. L., Zhou, J. J. and Chen, Y., 2006, "Flow and Heat Transfer in Microchannels with Rough Wall Surface," Energy Conversion and Management, Vol. 47, pp. 1311-1325. https://doi.org/10.1016/j.enconman.2005.09.001
  8. Morini, G. L., 2004, "Single-Phase Convective Heat Transfer in Microchannels: a Review of Experimental results," International Journal of Thermal Sciences, Vol. 43, pp. 631-651. https://doi.org/10.1016/j.ijthermalsci.2004.01.003
  9. Lee P. S., Garimella S. V. and Liu D., 2005, "Investigation of heat transfer in rectangular microchannels," International Journal of Heat and Mass Transfer, Vol. 48, pp. 1688-1704. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019
  10. Kays, W. M., Crawford, M. E. and Weigand, B., 2005, "Convective Heat and Mass Transfer," Fourth ed., McGraw-Hill, pp. 97-109.

Cited by

  1. Guidelines for the Determination of Single-Phase Forced Convection Coefficients in Microchannels vol.135, pp.10, 2013, https://doi.org/10.1115/1.4024499