DOI QR코드

DOI QR Code

이온교환에 의한 칼슘알지네이트 섬유의 제조

Preparation of Calcium Alginate Fiber by Ion Exchange

  • 손태원 (영남대학교 섬유패션학부) ;
  • 이민경 (영남대학교 섬유공학과) ;
  • 한송정 (영남대학교 섬유공학과)
  • 투고 : 2010.12.22
  • 심사 : 2011.01.27
  • 발행 : 2011.03.27

초록

Calcium alginate fiber were prepared by wet spinning of various conditions, including different concentrations of sodium alginate solution and $CaCl_2$ concentrations for coagulating the fiber through an absorption of calcium ion. The absorption of calcium ion during the coagulating step lead to solidify the fibers by the replacement of sodium ion with calcium ion to produce some crosslinking. The concentration of calcium ion in the calcium alginate fiber seems to be well related to the mechanical and physical property of the fiber, such as fiber strength moisture regain, and degree of swelling. The tensile strength of calcium alginate fiber was increased along with the increasing amount of sodium alginate solution. According to EDS analysis, 7 wt% $CaCl_2$ coagulation bath resulted in more calcium ion in the fiber compared to 3 wt% $CaCl_2$ coagulation bath. The decomposition temperature of calcium alginate fiber was $199^{\circ}C$, which $14^{\circ}C$ higher than that of sodium alginate.

키워드

참고문헌

  1. R. A. F. Clark, "The Molecular and Cellular Biology of Wound Repair, 2nd Ed.", Plenum Press, New York, pp.3-50, 1996.
  2. A. Haug, B. Larsen, and O. Smidsrod, Studies on the Sequence of Uronic Acid Residues in Alginic Acid, Acta. Chem., 21(3), 691-704(1967). https://doi.org/10.3891/acta.chem.scand.21-0691
  3. A. Haug and B. Larsen, Quantitative Determination of the Uronic Acid Composition of Alginates, Acta. Chem., 16(8), 1908-1918(1962). https://doi.org/10.3891/acta.chem.scand.16-1908
  4. A. Penman and G. R. Sanderson, A Method for the Determination of Uronic Acid Sequence in Alginates, Carbohydr. Res., 25(2), 273-282(1972). https://doi.org/10.1016/S0008-6215(00)81637-7
  5. H. Grasdalen, High-field, $^1H$-n.m.r. Spectroscopy of Alginate: Sequential Structure and Linkage Conformations, Carbohydr. Res., 118, 255-260(1983). https://doi.org/10.1016/0008-6215(83)88053-7
  6. B. Larsen, O. Smidsrod, T. Painter, and A. Haug, Calculation of the Nearest-Neighbour Frequencies in Fragments of Alginate from the Yields of Free Monomers after Partial Hydrolysis, Acta. Chem., 24(2), 726-728(1970). https://doi.org/10.3891/acta.chem.scand.24-0726
  7. C. K. Kuo and P. X. Ma, Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties, Biomaterials, 22(6), 511-521(2001). https://doi.org/10.1016/S0142-9612(00)00201-5
  8. J. L. van Susante, P. Buma, G. J. van Osch, D. Versleyen, P. M. van der Kraan, W. B. van der Berg, and G. N. Homminga, Culture of Chondrocytes in Alginate and Collagen Carrier Gels, Acta. Orthop., 66(6), 549-556(1995). https://doi.org/10.3109/17453679509002314
  9. A. Haug, B. Larsen, and O. Smidsrod, Uronic Acid Sequence in Alginate from Different Sources, Carbohydr. Res., 32(2), 217-225(1974). https://doi.org/10.1016/S0008-6215(00)82100-X
  10. I. Alan, "Thickening and Gelling Agents for Food", Blackie Academin & Professional, London, pp.227-249, 1997.
  11. Y. M. Qin, C. Agboh, X. D. Wang, and K. Gilding, Alginate Fibers and Dressings, Textiles Magazine, 25(4), 22-25(1996).
  12. I. J. Kim, J. W. Nah, and C. N. Jeong, The Electroactive Properties of Natural Alginate and Chitosan Films under the Electric Stimuli, Applied Chemistry, 6(2), 607-610(2002).
  13. F. Yokoyama, E. C. Achife, M. Matsuoka, Y. Shimamura, and K. Monobe, Morphology of Orientated Calcium Alginate Gels Obtained by the Flow-Gelation Method, Polymer, 32(16), 1916-1921(1991).
  14. J. W. Rhim, Physical and Mechanical Properties of Water Resistant Sodium Alginate Films, Lebensm Wiss Technol, 37(3), 323-330(2004). https://doi.org/10.1016/j.lwt.2003.09.008
  15. T. Gilchrist and A. M. Martin, Wound Treatment with Sorbsan-an Alginate Fibre Dressing, Biomaterials., 4(4), 317-320(1983). https://doi.org/10.1016/0142-9612(83)90036-4
  16. J. W. Rhim, J. H. Kim, and D. H. Kim, Modification of Na-Alginate Films by CaCl Treatment, J. Korean Food Sci. Technol., 35, 217-221(2003).
  17. J. W. Rhim, Physical and Mechanical Properties of Water Resistant Sodium Alginate Films, Lebensm Wiss Technol, 37(3), 323-330(2004). https://doi.org/10.1016/j.lwt.2003.09.008
  18. I. J. Kim, H. W. Kang and C. N. Jeong, The Electroresponse Properties of Alginate Films under the Electric Field, Polymer, 27(3), 195- 200(2003).
  19. A. E. Pavlath, A. Voisin and G. H. Robertson, Pectin-based Biodegradable Water Insoluble Films, Macromol. Symp., 140, 107-113(1999). https://doi.org/10.1002/masy.19991400112
  20. A. E. Pavlath, C. Gossett, W. Camira and G. H. Robertson, Ionomeric Films of Alginic Acid, J. Food Sci., 64(1), 61-63(1999). https://doi.org/10.1111/j.1365-2621.1999.tb09861.x