먹이제한과 단기 수온하강 조건에서 넙치의 스트레스 반응과 생리학적 대사활성 변화

Changes of Stress Response and Physiological Metabolic Activity of Flounder, Paralichthys olivaceus Following to Food Deprivation and Slow Temperature Descending

  • 투고 : 2011.03.07
  • 심사 : 2011.06.23
  • 발행 : 2011.06.30

초록

본 연구는 통상적으로 활어 수송을 위해 사용되는 수온 $15{\pm}2^{\circ}C$ 범위에서 단기 수온 강하와 단기간 먹이제한을 했을 때 넙치의 스트레스 반응과 생리상태를 혈중 생화학 인자와 4종류의 갑상선호르몬의 변화를 통해 파악하고, 이 결과들을 바탕으로 어류의 스트레스 및 생리활성 지표로서 분석 인자들의 효용성을 검토하고자 하였다. 먹이제한 실험은 1년생 넙치 양성어(전장 $32.9{\pm}1.2$ cm, 체중 $348.0{\pm}34.7$ g)를 이용해 8일간 실시하였고, 수온변화 실험은 1년생 양성어(전장 $32.7{\pm}1.2$ cm, 체중 $327.1{\pm}33.6$ g)를 이용해 8일간 수온을 $15.8^{\circ}C$에서 $13.3^{\circ}C$로 하강시키며 실시하였다. 혈중 생화학적 분석 인자는 ALT, AST, TP, GLU, 전해질($Na^+$, $K^+$, $Cl^-$), thyroid hormones (total $T_3$ & $T_4$ free $T_3$ & $T_4$)의 혈중 변화로 이루어졌다. 먹이섭식 제한 결과, AST, ALT 및 전해질에서는 절식기간 동안 어떠한 유의한 변화를 찾아볼 수 없었지만, TP와 GLU는 유의하게 감소하는 경향을 보였다. 갑상선호르몬 농도의 경우, 조사된 4종류 모두 절식기간이 길어지면서 감소하는 경향이 있었으며, 통계적으로 $FT_4$$TT_3$가 개시에 비해 실험 종료시 유의하게 감소하였다. 수온하강 실험의 경우, AST, ALT, TP 및 전해질 및 갑상선호르몬 농도에서 유의한 변화는 없었으나, GLU에서는 온도하강에 따른 농도 감소가 관찰되었다(P<0.05).

To find the preliminary environmental conditions for a short-time transport of living olive flounder, Paralichthys olivaceus, the stress response and physiological metabolic activity of the cultured fish to feed deprivation and slow temperature descending ($15.8^{\circ}C{\rightarrow}13.3^{\circ}C$) were monitored for 8 days. The monitored variables were the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), total protein (TP), electrolytes ($Na^+$, $K^+$, $Cl^-$) and thyroid hormones ($TT_4$, $TT_3$, $FT_4$ and $FT_3$). In food deprivation experiment for 8 days, we did not find any statistical change of level in AST, ALT and electrolytes ($Na^+$, $K^+$, $Cl^-$), but found a significant decrease in TP and GLU. In thyroid hormones, the levels of four hormones in plasma were all showing a tendency to decrease. Especially, $FT_4$ and $TT_3$ were significantly decreased, indicating a withering of physiologic activity. In the temperature test, although no any significant change in AST, TP and electrolytes ($Na^+$, $K^+$, $Cl^-$), we observed a significant decrease of ALT and GLU following to temperature descending from $15.8^{\circ}C$ to $13.3^{\circ}C$ (P<0.05). In the levels of thyroid hormones, any significant change was not observed for experimental period. We conclude that the stress response and physiological activity of olive flounder were more influenced by feed deprivation than slow temperature descending at a transport of living fish, and plasma GLU appears to be sensitive factor to physiological metabolic activity, indicating that it could be used as a monitering mark or index for a health inspection of the fish.

키워드

참고문헌

  1. Barton, B.A., G.S. Weiner and C.B. Schreck. 1985. Effect of prior acid exposure on physiological responses of juvenile rainbow trout (Salmo gairdneri) to acute handling stress. Can. J. Fish. Aquat. Sci., 42: 710-717. https://doi.org/10.1139/f85-091
  2. Beckman, B.R., D.A. Larsen, C. Sharpe, B. Lee-Pawlak, C.B. Schreck and W.W. Dickhoff. 2000. Physiological status of naturally reared juvenile spring chinook salmon in the Yakima River: Seasonal dynamics and changes associated with smolting. Trans. Am. Fish Soc., 129: 727-753. https://doi.org/10.1577/1548-8659(2000)129<0727:PSONRJ>2.3.CO;2
  3. Bolliet, V., A. Aranda and T. Boujard. 2001. Demand-feeding rhythm in rainbow trout and European catfish. Synchronisation by photoperiod and food availability. Physiol. Behav., 73: 625-633. https://doi.org/10.1016/S0031-9384(01)00505-4
  4. Cho, S.H. and J.K. Lee. 2002. Compensatory growth in juvenile olive flounder (Paralichthys olivaceus) in the spring. J. Fish. Sci. Tech., 5: 122-126. https://doi.org/10.5657/fas.2002.5.2.122
  5. Cook, J.T., A.M. Sutterlin and M.A. McNiven. 2000. Effect of food deprivation on oxygen consumption and body composition of growth-enhanced transgenic Atlantic salmon, Salmo salar. Aquaculture, 188: 47-63. https://doi.org/10.1016/S0044-8486(00)00333-1
  6. Demski, L.S. and R.G. Northcutt. 1983. The terminal nerve: a new chemosensory system in vertebrates? Science, 220: 435-437. https://doi.org/10.1126/science.6836287
  7. Gaylord, T.G. and D.M. Gatlin. 2000. Assessment of compensatory growth in channel catfish (Ictalurus punctatus) and associated changes in body condition indices. J. World Aquacult. Soc., 31: 326-336.
  8. Gaylord, T.G., D.S. MacKenzie and D.M. Gatlin. 2001. Growth performance, body composition and plasma thyroid hormone status of channel catfish (Ictalurus punctatus) in response to short-term feed deprivation and refeeding. Fish Physiol. Biochem., 24: 73-79. https://doi.org/10.1023/A:1011199518135
  9. Ishioka, H. 1980. Stress reactions in the marine fish. I. Stress reactions induced by temperature change. Bull. Jap. Soc. Sci. Fish., 46: 523-532. https://doi.org/10.2331/suisan.46.523
  10. Kim, K.M., K.D. Kim, S.M. Choi, K.W. Kim and Y.J. Kang. 2005. Optimum feeding frequency of extruded pellet for the growth of juvenile flounder, Paralichthys olivaceus during the summer season. J. Aquaculture, 18: 231-235. (in Korean)
  11. Leatherland, J.F. 1994. Reflections on thyroidology of fishes: from molecules to humankind. Guelph Ichthyology Reviews, 2: 1-67.
  12. Lee, S.-M., S.H. Cho and D.-J. Kim. 2000. Effects of feeding frequency and dietary energy level on growth and body composition of juvenile flounder, Paralichthys olivaceus (Temminck & Schlegel). Aquacult. Res., 31: 917-921. https://doi.org/10.1046/j.1365-2109.2000.00505.x
  13. MacKenzie, D.S., C.M. VanPutte and K.A. Leiner. 1998. Nutrient regulation of endocrine function in fish. Aquaculture, 161: 3-25. https://doi.org/10.1016/S0044-8486(97)00253-6
  14. Navarro, I. and J. Gutierrez. 1995. Fasting and starvation. In: Hochachka, P.W. and T.P. Mommsen (eds.), Biochemistry and Molecular Biology of Fishes Vol. 4. Elsevier Science, Amsterdam, pp. 393-434.
  15. Peter, R.E. and L.W. Crim. 1979. Reproductive endocrinology of Wshes: gonadal cycles and gonadotropin in teleosts. Annu. Rev. Physiol., 41: 323-335. https://doi.org/10.1146/annurev.ph.41.030179.001543
  16. Rink, E. and M.F. Wullimann. 1998. Some forebrain connections of the gustatory system in the goldfish, Carassius auratus visualized by separate DiI application to the hypothalamic inferior lobe and the torus lateralis. J. Comp. Neurol., 394: 152-170. https://doi.org/10.1002/(SICI)1096-9861(19980504)394:2<152::AID-CNE2>3.0.CO;2-1
  17. Robertson, L., P. Thomas, C.R. Arnold and J.M. Trant. 1987. Plasma cortisol and secondary stress responses of red drum to handling, transport, rearing density, and disease outbreak. Prog. Fish-Cult., 49: 1-12. https://doi.org/10.1577/1548-8640(1987)49<1:PCASSR>2.0.CO;2
  18. Saether, B.S. and M. Jobling. 1999. The effects of ration level on feed intake and growth, and compensatory growth after restricted feeding, in turbot Scophthalmus maximus L. Aquaculture Res., 30: 647-653. https://doi.org/10.1046/j.1365-2109.1999.00368.x
  19. Sweeting, R.M. and J.G. Eales. 1992. The effects of fasting and feeding on hepatic thyroxine 5-monodeiodinase activity in the rainbow trout, Oncorhynchus mykiss. Can. J. Zool., 70: 1516-1525. https://doi.org/10.1139/z92-209
  20. Talbot, C., S. Corneillie and O. Korsoen. 1999. Pattern of feed intake in four species of fish under commercial farming conditions: implications for feeding management. Aquaculture Res., 30: 509-518. https://doi.org/10.1046/j.1365-2109.1999.00369.x
  21. Thomas, P. and L. Robertson. 1991. Plasma cortisol and glucose stress responses of red drum (Sciaenops ocellatus) to handling and shallow water stressors and anesthesia with MS-222, quialdine sulfate and metomdate. Aquaculture, 96: 69-86. https://doi.org/10.1016/0044-8486(91)90140-3
  22. van der Geyten, S., K.A. Mol, W. Pluymers, E.R. Kuhn and V.M. Darras. 1998. Changes in plasma T3 during fasting/refeeding in tilapia (Oreochromis niloticus) are mainly regulated through changes in hepatic type II iodothyronine deiodinase. Fish Physiol. Biochem., 19: 135-143. https://doi.org/10.1023/A:1007790527748
  23. Wullimann, M.F. and T. Mueller. 2004. Teleostean and mammalian forebrains contrasted: evidence from genes to behavior. J. Comp. Neurol., 475: 143-162. https://doi.org/10.1002/cne.20183