CUDA-based Fast DRR Generation for Analysis of Medical Images

의료영상 분석을 위한 CUDA 기반의 고속 DRR 생성 기법

  • 양상욱 ((주)코체인솔루션스 선행연구팀) ;
  • 최영 (중앙대학교 기계공학부) ;
  • 구승범 (중앙대학교 기계공학부)
  • Received : 2011.03.11
  • Accepted : 2011.05.28
  • Published : 2011.08.01

Abstract

A pose estimation process from medical images is calculating locations and orientations of objects obtained from Computed Tomography (CT) volume data utilizing X-ray images from two directions. In this process, digitally reconstructed radiograph (DRR) images of spatially transformed objects are generated and compared to X-ray images repeatedly until reasonable transformation matrices of the objects are found. The DRR generation and image comparison take majority of the total time for this pose estimation. In this paper, a fast DRR generation technique based on GPU parallel computing is introduced. A volume ray-casting algorithm is explained with brief vector operations and a parallelization technique of the algorithm using Compute Unified Device Architecture (CUDA) is discussed. This paper also presents the implementation results and time measurements comparing to those from pure-CPU implementation and open source toolkit.

Keywords

References

  1. Moeslund, T. B., Hilton, A. and Kruger, V. A., "Survey of Advances in Vision-based Human Motion Capture and Analysis," Computer Vision and Image Understanding, Vol. 104, pp. 90-126, 2006. https://doi.org/10.1016/j.cviu.2006.08.002
  2. Selvik, G., "Roentgen stereophotogrammetry: A Method for the Study of the Kinematics of Skeletal System," Acta Orthop Scand Suppl, Vol. 24, pp. 343-352, 1983.
  3. Valstar, E. R., Nelissen, R., Reiber, J. and Rozing, P. M., "The Use of Roentgen Stereophotogrammetry to Study Micromotion of Orthopaedic Implants," ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 56, pp. 376-389, 2002. https://doi.org/10.1016/S0924-2716(02)00064-3
  4. van de Kraats, E. B., Penney, G. P., Tomazevi , D., van Walsum, D. and Niessen, W. J., "Standardized Evaluation Methodology for 2-D-3-D Registration," IEEE Trans. Medical Imaging, Vo. 24, pp. 1177-1188, 2005. https://doi.org/10.1109/TMI.2005.853240
  5. Murphy, M. J., "An Automatic Six-degree-of-freedom Image Registration Algorithm for Image-guided Frameless Stereotaxic Radiosurgery," Med Phys, Vol. 24, No. 6, pp. 857-866, 1997. https://doi.org/10.1118/1.598005
  6. Hamadeh, A., Lavallee, S. and Cinquin, P., "Automated 3-Dimensional Computed Tomographic and Fluoroscopic Image Registration," Computer-Aided Surgery, Vol. 3, No. 1, pp. 11-19, 1998. https://doi.org/10.3109/10929089809148123
  7. Gueziec, A., Kazanzides, P., Williamson, B. and Taylor, R. H., "Anatomy-based Registration of CTscan and Intraoperative X-ray Images for Guiding a Surgical Robot," IEEE Trans Med Imag, Vol. 17, pp. 715-728, 1998. https://doi.org/10.1109/42.736023
  8. Bansal, R., Staib, L., Chen, Z., Rangarajan, A., Knisely, J., Nath, R. and Duncan, J. S., "A Minimax Entropy Registration Framework for Patient Setup Verification in Radiotherapy," Computer-Aided Surgery, Vol. 4, pp. 287-304, 1999. https://doi.org/10.3109/10929089909148182
  9. Czopf, Á., Brack, C., Roth, M. and Schweikard, A., "2D-3D Registration of Curved Objects," Periodica Polytechnica Ser Elect Eng, Vol. 43, No. 1, pp. 19-41, 1999.
  10. Penney, G. P., Batchelor, P. G., Hill, D. L. G., Hawkes, D. J. and Weese, J, "Validation of a Two-to Threedimensional Registration Algorithm for Aligning Preoperative CT Images and Intraoperative Fluoroscopy Images," Med Phys, Vol. 28, No. 6, pp. 1024-1032, 2001. https://doi.org/10.1118/1.1373400
  11. Rohlfing, T., Russakoff, D. B., Murphy, M. J. and Maurer Jr, C. R., "An Intensity-based Registration Algorithm for Probabilistic Images and Its Application for 2-D to 3-D Image Registration," Proc. SPIE 2002, pp. 581-591, 2002.
  12. Hipwell, J. H., Penney, G. P., McLaughlin, R. A., Rhode, K., Summers, P., Cox, T. C., Byrne, J. V., Noble, J. A. and Hawkes D. J., "Intensity-based 2-D-3-D Registration of Cerebral Angiograms," IEEE Trans Med Imag , Vol. 22, No. 11, pp. 1417-1426, 2003. https://doi.org/10.1109/TMI.2003.819283
  13. Russakoff, D. B., Rohlfing, T., Ho, A., Kim, D. H., Shahidi, R., Adler Jr, J. R. and Maurer Jr, C. R., "Evaluation of Intensity-based 2D-3D Spine Image Registration using Clinical Gold-standard Data," Lec Note Comput Sci WBIR, Vol. 2717, pp. 151-160, 2003.
  14. Vermandel, M., Betrouni, N., Palos, G., Gauvrit, J. Y., Vasseur, C. and Rousseau, J., "Registration, Matching, and Data Fusion in 2D/3D Medical Imaging: Application to DSA and MRA," Lec Note Comput Sci MICCAI, Vol. 2878, pp. 778-785, 2003.
  15. Livyatan, H., Yaniv, Z. and Joskowicz, L., "Gradientbased 2-D/3-D Rigid Registration of Fluoroscopic X-ray to CT," IEEE Trans Med Imag, Vol. 22, No. 11, pp. 1395-1406, 2003. https://doi.org/10.1109/TMI.2003.819288
  16. Tomazevi , D., Likar, B., Slivnik T. and Pernuš, F., "3-D/2-D Registration of CT and MR to X-ray Images," IEEE Trans Med Imag, Vol. 22, No. 11, pp. 1407-1416, 2003. https://doi.org/10.1109/TMI.2003.819277
  17. Shams, R.., Sadeghi, P., Kennedy, R. and Hartley, R., "A Survey of Medical Image Registration on Multicore and the GPU," Signal Processing Magazine, Vol. 27, No. 2, pp. 50-60, 2010.
  18. Mori, S., Kobayashi, M., Kumagai, M. and Minohara, S., "Development of a GPU-based Multithreaded Software Application to Calculate Digitally Reconstructed Radiographs for Radiotherapy," Radiological Physics and Technology, Vol. 2, pp. 40-45, 2009. https://doi.org/10.1007/s12194-008-0040-3
  19. Xu, L. and Wan, J. W. L., "Real-Time 2D-3D Medical Image Registration using RapidMind Multi-core Development Platform," Proc EMBC08, pp. 20-24, 2008.
  20. Grabner, M., Pock, T., Gross, T. and Kainz, B., "Automatic Differentiation for GPU-accelerated 2D/ 3D Registration," Lec Note Comput Sci AAD, Vol. 64, pp. 259-269, 2008.
  21. Shams, R., Sadeghi, P., Kennedy, R. and Hartley, R., "Parallel Computation of Mutual Information on the CPU with Application to Real-time Registration of 3D Medical Images," Computer Methods and Programs in Biomedicine, Vol. 99, No. 2, pp. 133-146, 2010. https://doi.org/10.1016/j.cmpb.2009.11.004
  22. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A. E. and Purcell, T., "A Survey of General-Purpose Computation on Graphics Hardware," Computer Graphics Forum, Vol. 26, No. 1, pp. 80-113, 2007. https://doi.org/10.1111/j.1467-8659.2007.01012.x
  23. NVIDIA, CUDA Zone, http://www.nvidia.com/object/cuda_home_new.html, 2010.
  24. Fruhauf, T., "Raycasting vector fields," In IEEE Visualization '96, pp. 115-120, 1996.
  25. Levoy, M., "Display of Surfaces from Volume Data," IEEE Computer Graphics and Applications, Vol. 8, No. 3, pp. 29-37, 1988. https://doi.org/10.1109/38.511
  26. Danskin, J. and Hanrahan, P., "Fast Algorithms for Volume Ray Tracing", VVS '92 Proceedings of the workshop on Volume Visualization, pp. 91-106, 1992.
  27. Parker, S., Parker, M., Livnat, Y., Sloan, P., Hansen, C. and Shirley, P., "Interactive Ray Tracing for Volume Visualization", Visualization and Computer Graphics, Vol. 5, No. 3, pp. 238-250, 1999. https://doi.org/10.1109/2945.795215
  28. Weiskopf, D., GPU-Based Interactive Visualization Techniques, Springer, 2006.
  29. NVIDIA, CUDA C Programming Guide, http://developer. download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf, 2010.
  30. Sanders, J. and Kandrot, E., CUDA by Example, Addison-Wesley, 2010.
  31. NVIDIA, CUDA C Best Practices Guide, http:// developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_ Best_Practices_Guide.pdf, 2010.
  32. Kitware, VTK-The Visualization Toolkit, http://www.vtk.org, 2010.