DOI QR코드

DOI QR Code

Current Status of Tree Height Estimation from Airborne LiDAR Data

  • Received : 2011.05.03
  • Accepted : 2011.05.27
  • Published : 2011.06.30

Abstract

Most nations around the world have expressed significant concern in the climate change due to a rapid increase in green-house gases and thus reach an international agreement to control total amount of these gases for the mitigation of global warming. As the most important absorber of carbon dioxide, one of major green-house gases, forest resources should be more tightly managed with a means to measure their total amount, forest biomass, efficiently and accurately. Forest biomass has close relations with forest areas and tree height. Airborne LiDAR data helps extract biophysical properties on forest resources such as tree height more efficiently by providing detailed spatial information about the wide-range ground surface. Many researchers have thus developed various methods to estimate tree height using LiDAR data, which retain different performance and characteristics depending on forest environment and data characteristics. In this study, we attempted to investigate such various techniques to estimate tree height, elaborate their advantages and limitations, and suggest future research directions. We first examined the characteristics of LiDAR data applied to forest studies and then analyzed methods on filtering, a precedent procedure for tree height estimation. Regarding the methods for tree height estimation, we classified them into two categories: individual tree-based and regression-based method and described the representative methods under each category with a summary of their analysis results. Finally, we reviewed techniques regarding data fusion between LiDAR and other remote sensing data for future work.

Keywords

Acknowledgement

Supported by : NRF

References

  1. Andersen, H. E., S. E. Reutebuch, and R. J. McGaughey, 2006. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods, Canadian Journal of Remote Sensing, 32(5): 355-366. https://doi.org/10.5589/m06-030
  2. Axelsson, P., 2000. DEM Generation from Laser Scanner Data using Adaptive TIN Models, Proc. of 2000 International Archives of Photogrammetry and Remote Sensing, 33(B4): 110-117.
  3. Bienert, A., S. Scheller, E. Keane, G. Mullooly, and F. Mohan, 2006. Application of terrestrial laser scanners for the determination of forest inventory parameters, Proc. of 2006 International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5).
  4. Brandtberg, T., T. A. Warner, R. E. Landenberger, and J. B. McGraw, 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America, Remote Sensing of Environment, 85: 290-303. https://doi.org/10.1016/S0034-4257(03)00008-7
  5. Chang, A., K. Yu, Y. Kim, and B. Lee, 2006. Estimation of Individual Tree and Tree Height using Color Aerial Photograph and LiDAR Data, Korean Journal of Remote Sensing, 22(6): 543-551. https://doi.org/10.7780/kjrs.2006.22.6.543
  6. Coops, N. C., T. Hilker, M. A. Wulder, B. St-Onge, G. Newnham, A. Siggins, and J. A. (Tony) Trofymow, 2007. Estimating canopy structure of Douglas-fir forest stands from discretereturn LiDAR, Trees, 21: 295-310. https://doi.org/10.1007/s00468-006-0119-6
  7. Goodwin, N. R., N. C. Coops, and D. S. Culvenor, 2006. Assessment of forest structure with airborne LiDAR and the effects of platform altitude, Remote Sensing of Environment, 103: 140-152. https://doi.org/10.1016/j.rse.2006.03.003
  8. Hendrix, C., 1999. Parameterization of LIDAR Interaction with Vegetation Canopy in a Forested Environment, Columbia: University of South Carolina, Masters Thesis.
  9. Hudak, A. T., M. A. Lefsky, W. B. Cohen, and M. Berterretche, 2002. Integration of lidar and Lansat ETM+ data for estimaitng and mapping forest canopy height, Remote Sensing of Environment, 82: 397-416. https://doi.org/10.1016/S0034-4257(02)00056-1
  10. Hyde, P., R. Dubayah, W. Walker, J. B. Blair, M. Hofton, and C. Hunsaker, 2006. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy, Remote Sensing of Environment, 102: 63-73. https://doi.org/10.1016/j.rse.2006.01.021
  11. Hyde, P., R. Nelson, D. Kimes, and E. Levine, 2007. Exploring LiDAR-RaDAR synergy-predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR, Remote Sensing of Environment, 106: 28-38. https://doi.org/10.1016/j.rse.2006.07.017
  12. Hollaus, M., W. Wagner, B. Maier, and K. Schadauer, 2007. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment, Sensors, 7: 1559-1577. https://doi.org/10.3390/s7081559
  13. Huang, H., Z. Li, P. Gong, X. Cheng, N. Clinton, C. Cao, W. Ni, and L. Wang, 2011. Automated Methods for Measuring DBH and Tree Heights with a Commercial Scanning Lidar, Photogrammetric Engineering and Remote Sensing, 77(3): 219-227. https://doi.org/10.14358/PERS.77.3.219
  14. Hyyppa, J., O. Kelle, M. Lehikoinen, and M. Inkinen, 2001. A Segmentation-Based Method to Retrieve Stem Volume Estimates from 3-D Tree Height Models Produced by Laser Scanners, IEEE Transactions on Geoscience and Remote Sensing, 39(5): 969-975. https://doi.org/10.1109/36.921414
  15. Jensen, J. R., 2000. Remote Sensing of the Environment, prentice hall.
  16. Kobler, A., N. Pfeifer, P. Ogrinc, L. Todorovski, K. Oztir, and S. Dzeroski, 2007. Repetitive interpolation: A robust algorithm for DTM generation from Aerial Laser Scanner Data in forested terrain, Remote Sensing of Environment, 108: 9-23. https://doi.org/10.1016/j.rse.2006.10.013
  17. Koch, B., U. Heyder, and H. Weinacker, 2006. Detection of Individual Tree Crowns in Airborne Lidar Data, Photogrammetric Engineering and Remote Sensing, 72(4): 357-363. https://doi.org/10.14358/PERS.72.4.357
  18. Kraus, K. and N. Pfeifer, 1998. Determination of terrain models in wooded areas with airborne laser scanner data, ISPRS Journal of Photogrammetry and Remote Sensing, 53: 193-203. https://doi.org/10.1016/S0924-2716(98)00009-4
  19. Lefsky, M. A., W. B. Cohen, D. J. Harding, G. G. Parker, S. A. Acker, and S. T. Gower, 2001. Lidar Remote Sensing of Aboveground Biomass in Three Biomes, Proc. of 2001 International Archives of Photogrammetry and Remote Sensing, Annapolis, MD, Oct. 22- 24, vol. 34-3/W4, 155-160.
  20. Lefsky, M., W. B. Cohen, G. G. Parker, and D. J. Harding, 2002. Lidar remote sensing for ecosystem studies, BioScience, 52: 19-30. https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
  21. Lefsky, M. A., D. J. Harding, M. Keller, and W. B. Cohen, 2005. Estimates of forest canopy height and aboveground biomass using ICESat, Geophysical Research Letters, 32(L22S02): 1-4.
  22. Lim, K., P. Treitz, K. Baldwin, I. Morrison, and J. Green, 2003. Lidar remote sensing of biophysical properties of tolerant northern hardwood forests, Canadian Journal of Remote Sensing, 29(5): 658-678. https://doi.org/10.5589/m03-025
  23. Lin, C., G. Thomson, C. S. Lo, and M. S. Yang, 2011. A Multi-level Morphological Active Contour Algorithm for Delineating Tree Crowns in Mountatinous Forest, Photogrammetric Engineering and Remote Sensing, 77(3): 241-249. https://doi.org/10.14358/PERS.77.3.241
  24. Maltamo, M., P. Packalén, X. Yu, K. Eerikä, J. Hyyppä, and J. Pitkänen, 2005. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data, Forest Ecology and Management, 216: 41-50. https://doi.org/10.1016/j.foreco.2005.05.034
  25. Næsset, E., 1997. Determination of mean tree height of forest stands using airborne laser scanner data, ISPRS Journal of Photogrammetry and Remote Sensing, 52: 49-56. https://doi.org/10.1016/S0924-2716(97)83000-6
  26. Næsset, E., 2002. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data, Remote Sensing of Environment, 80: 88-99. https://doi.org/10.1016/S0034-4257(01)00290-5
  27. Nilsson, M., 1996. Estimation of Tree Heights and Stand Volume Using an Airborne Lidar System, Remote Sensing of Environment, 56: 1-7. https://doi.org/10.1016/0034-4257(95)00224-3
  28. Patenaude, G., R. A. Hill, R. Milne, D. L. A. Gaveau, B. B. J. Briggs, and T. P. Dawson, 2004. Quantifying forest above ground carbon content using LiDAR remote sensing, Remote Sensing of Environment, 93: 368-380. https://doi.org/10.1016/j.rse.2004.07.016
  29. Persson, A., J. Holmgren, and U. Soderman, 2002. Detecting and Measuring Individual Trees Using an Airborne Laser Scanner, Photogrammetric Engineering and Remote Sensing, 68(9): 925-932.
  30. Popescu, S. C., R. H. Wynne, and R. F. Nelson, 2002. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size, Computers and Electronics in Agriculture, 37: 71-95. https://doi.org/10.1016/S0168-1699(02)00121-7
  31. Popescu, S. C., 2007. Estimating biomass of individual pine trees using airborne lidar, Biomass and Bioenergy, 31: 646-655. https://doi.org/10.1016/j.biombioe.2007.06.022
  32. Raber, G. T., J. R. Jensen, S. R. Schill, and K. Schuckman, 2002. Creation of Digital Terrain Models Using an Adaptive Lidar Vegetation Point Removal Process, Photogrammetric Engineering and Remote Sensing, 68(12): 1307-1315.
  33. Schardt, M., M. Ziegler, A. Wimmer, R. Wack, and J. Hyyppa, 2002. Assessment of forest parameters by means of laser scanning, Proc. of the ISPRS Commission III Symposium Part 3A, International Archives of Photogrammetry and Remote Sensing, Graz, Austria, 34(9-13): 302-309.
  34. Sexton, J. O., T. Bax, P. Siqueira, J. J. Swenson, and S. Hensley, 2009. A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America, Forest Ecology and Management, 257: 1136-1147. https://doi.org/10.1016/j.foreco.2008.11.022
  35. Sithole, G., 2001. Filtering of Laser Altimetry Data using A Slope Adaptive Filter, Proc. of 2001 International Archives of Photogrammetry and Remote Sensing, Annapolis, MD, Oct. 22- 24, vol. 34-3/W4, 203-210.
  36. Soille, P., 1999. Morphological Image Analysis, Springer, Berlin.
  37. Suarez, J. C., C. Ontiveros, S. Smith, and S. Snape, 2005. Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry, Computers and Geosciences, 31: 253-262. https://doi.org/10.1016/j.cageo.2004.09.015
  38. Sun, G., K. J. Ranson, D. S. Kimes, J. B. Blair, and K. Kovacs, 2008. Forest vertical structure from GLAS: An evaluation using LVIS and STRM data, Remote Sensing of Environment, 112: 107-117. https://doi.org/10.1016/j.rse.2006.09.036
  39. Tang, F. F., J. N. Liu, X. H. Zhang, and Z. M. Ruan, 2008. Derivation of digital terrain model in forested area with airborne lidar data, Proc. of 2008 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, 37-B3b.
  40. Tesfamichael, S. G., J. A. N. van Aardt, and F. Ahmed, 2010. Estimating plot-level tree height and volume of Eucalyptus grandis plantations using small-footprint, discrete return lidar data, Progress in Physical Geography, 34(4): 515- 540. https://doi.org/10.1177/0309133310365596
  41. Vosselman, G., 2000. Slope based filtering of laser altimetry data, Proc. of 2000 International Archives of Photogrammetry and Remote Sensing, 33-B3/2, 935-942.
  42. Wagner, W., C. Eberhofer, M. Hollaus, and G. Summer, 2004. Robust filtering of airborne laser scanner data for vegetation analysis, Proc. of 2004 International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36-8/W2, 56-61.
  43. Woo, C., J. Yoon, J. Shin, and K. Lee, 2007. Automatic Extraction of Individual Tree Height in Mountainous Forest Using Airborne Lidar Data, Journal of Korean Forest Society, 96(3): 251-258.
  44. Zhao, K., S. Popescu, and R. Nelson, 2009. Lidar remote sensing of forest biomass: A scaleinvariant estimation approach using airborne lasers, Remote Sensing of Environment, 113: 182-196. https://doi.org/10.1016/j.rse.2008.09.009

Cited by

  1. Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data vol.28, pp.6, 2012, https://doi.org/10.7780/kjrs.2012.28.6.6
  2. The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data vol.10, pp.8, 2018, https://doi.org/10.3390/rs10081183
  3. 항공 라이다데이터를 이용한 개별수목탐지 및 평균수고추정 vol.20, pp.3, 2012, https://doi.org/10.12672/ksis.2012.20.3.027
  4. 저해상도 지형 자료를 활용한 KOMPSAT-3A 스테레오 영상 기반의 DTM 생성 방법 vol.35, pp.5, 2011, https://doi.org/10.7780/kjrs.2019.35.5.1.8
  5. Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories vol.13, pp.15, 2021, https://doi.org/10.3390/rs13152971