DOI QR코드

DOI QR Code

Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm

  • Kim, Sun-Hwa (Inha University, Department of Geoinformatic Engineering) ;
  • Eun, Jeong (Inha University, Department of Geoinformatic Engineering) ;
  • Kang, Sung-Jin (Inha University, Department of Geoinformatic Engineering) ;
  • Lee, Kyu-Sung (Inha University, Department of Geoinformatic Engineering)
  • Received : 2011.05.19
  • Accepted : 2011.06.18
  • Published : 2011.06.30

Abstract

Short-term land cover changes, such as forest fire scar and crop harvesting, can be detected by high temporal resolution satellite imagery like MODIS and AVHRR. Because these optical satellite images are often obscured by clouds, the static cloud-free composite methods (maximum NDVI, minblue, minVZA, etc.) has been used based on non-overlapping composite period (8-day, 16-day, or a month). Due to relatively long time lag between successive images, these methods are not suitable for observing short-term land cover changes in near-real time. In this study, we suggested a new dynamic cloud-free composite algorithm that uses cut-and-patch method of cloud-masked daily MODIS data using MOD35 products. Because this dynamic composite algorithm generates daily cloud-free MODIS images with the most recent information, it can be used to monitor short-term land cover changes in near-real time. The dynamic composite algorithm also provides information on the date of each pixel used in compositing, thereby makes accurately identify the date of short-term event.

Keywords

References

  1. Ackerman, S., K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, S. W. Seemann, and H. Zhang, 2006. Discriminating clear-sky form cloud with MODIS, Algorithm Theoretical Basis document(MOD35), Version 5.0.
  2. Ahl, D. E., S. T. Gower, S. N. Burrows, N. V. Shabnaov, R. B. Myneni, and Y. Knyazikhin, 2006. Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS, Remote Sensing of Environment, 104: 88-95. https://doi.org/10.1016/j.rse.2006.05.003
  3. Asner, P. A., B. H. Braswell, D. S. Schimel, and C. A. Wessman, 1998. Ecological research needs from multiangle remote sensing data, Remote Sensing of Environment, 63: 155-165. https://doi.org/10.1016/S0034-4257(97)00139-9
  4. Bonan, G. B., K. W. Oleson, M. Vertenstein, and S. Levis, 2003. The land surface climatology of the community land model coupled to the NCAR community climate model, Journal of Climate, 15: 3123-3149.
  5. Botta, A., N. Viovy, and P. Ciais, 2000. A global prognostic scheme of leaf onset using satellite data, Global Change Biology, 6: 709-725. https://doi.org/10.1046/j.1365-2486.2000.00362.x
  6. Breaker, L. C., E. M. Armstrong, and C. A. Endris, 2010. Establishing an objective basis for image compositing in satellite oceanography, Remote Sensing of Environment, 114: 345-362. https://doi.org/10.1016/j.rse.2009.09.014
  7. Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, 2004. A simple method for reconstructing a high-quality NDVI timeseries data set based on the Savitzky-Golay filter, Remote Sensing of Environment, 91: 332-344. https://doi.org/10.1016/j.rse.2004.03.014
  8. Chuine, I., G. Cambon, and P. Comtois, 2000. Scaling phenology from the local to the regional level: advances from species-specific phonological models, Global Change Biology, 6(8): 943-952. https://doi.org/10.1046/j.1365-2486.2000.00368.x
  9. Chuvieco, E., G. Ventura, M. P. Martin, and I. Gomez, 2005. Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping, Remote Sensing of Environment, 94: 450-462. https://doi.org/10.1016/j.rse.2004.11.006
  10. Chuvieco, E., P. Englefield, A. P. Trishchenko, and Y. Luo, 2008. Generation of long time series of burn area maps of the Boreal forest from NOAA-AVHRR composite data, Remote Sensing of Environment, 112: 2381-2396. https://doi.org/10.1016/j.rse.2007.11.007
  11. Cihlar, J., 1996. Identification of contaminated pixels in AVHRR composite images for studies of land biosphere, Remote Sensing of Environment, 56: 149-163. https://doi.org/10.1016/0034-4257(95)00190-5
  12. Cihlar, J. and J. Howarth, 1994. Detection and removal of cloud contamination from AVHRR composite images, IEEE Transactions on Geoscience and Remote Sensing, 32: 427-437. https://doi.org/10.1109/36.295057
  13. Cihlar, J., R. Latifovic, J. Chen, A. Trishchenko, Y. Du, G. Fedosejevs, and B. Guindon, 2004. Systematic corrections of AVHRR image composites for temporal studies, Remote Sensing of Environment, 89: 217-223. https://doi.org/10.1016/j.rse.2002.06.007
  14. Cihlar, J., D. Manak, and N. Voisin, 1994. AVHRR bidirectional reflectances effects and compositing, Remote Sensing of Environment, 48: 77-88. https://doi.org/10.1016/0034-4257(94)90116-3
  15. Cihlar, J., H. Ly, Z. Li, J. Chen, H. Pokrant, and F. Huang, 1997. Multitemporal, multichannel AVHRR data sets for land biosphere studiesartifacts and corrections, Remote Sensing of Environment, 60: 35-57. https://doi.org/10.1016/S0034-4257(96)00137-X
  16. de Beurs, K. M. and G. M. Henebry, 2004. Land surface phenology, climate variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan, Remote Sensing of Environment, 89: 497-209. https://doi.org/10.1016/j.rse.2003.11.006
  17. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986. Biosphere- Atmosphere Transfer Scheme(BATS) for the NCAR CCM, NCAR/TN-275-STR. Boulder, CO:NCAR Research.
  18. Duchemin, B., D. Guyon, and J. P. Lagouarde, 1999. Potential and limits of NOAA-AVHRR temporal composite data for phenology and water stress monitoring of temperate forest ecosystems, International Journal of Remote Sensing, 20: 895-917. https://doi.org/10.1080/014311699212984
  19. Duchemin, B., B. Berthelot, G. Dedieu, M. Leroy, and P. Maisongrande, 2002. Normalisation of directional effects in 10-day global syntheses derived from VEGETATION/SPOT: II. Validation of an operational method on actual data sets, Remote Sensing of Environment, 81: 101-113. https://doi.org/10.1016/S0034-4257(01)00337-6
  20. Eidenshink, J. C., and J. L. Faundeen, 1994. The 1 km AVHRR global land data set: needs of the International Geosphere Biosphere Program, International Journal of Remote Sensing, 16: 3443-3462.
  21. Fensholt, R., K. Rasmussen, T. T. Nielsen, and C. Mbow, 2009. Evaluation of earth observation based long term vegetation trends - Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data, Remote Sensing of Environment, 113: 1886-1898. https://doi.org/10.1016/j.rse.2009.04.004
  22. Fernandez, A., P. Illera, and J. L. Casanova, 1997. Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data, Remote Sensing of Environment, 60: 153-162. https://doi.org/10.1016/S0034-4257(96)00178-2
  23. Fontana, F. M. A., A. P. Trishchenko, K. V. Khlopenkov, Y. Luo, and S. Wunderle, 2009. Impact of orthorectification and spatial sampling on maximum NDVI composite data in mountain regions, Remote Sensing of Environment, 113: 2701-2712. https://doi.org/10.1016/j.rse.2009.08.008
  24. Gallo, K., L. Ji, B. Reed, J. Eidenshink, and J. Dwyer, 2005. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data, Remote Sensing of Environment, 99: 221-231. https://doi.org/10.1016/j.rse.2005.08.014
  25. Gao, F., J. Masek, M. Schwaller, and F. Hall, 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance, IEEE Transactions on Geoscience and Remote Sensing, 44: 2207-2218. https://doi.org/10.1109/TGRS.2006.872081
  26. Gutman, G. and A. Ignatov, 1995. Global land monitoring from AVHRR: potential and limitations, International Journal of Remote Sensing, 16(13): 2301-2309. https://doi.org/10.1080/01431169508954559
  27. Gutman, G. G., 1991. Vegetation indices from AVHRR: an update and future prospects, Remote Sensing of Environment, 35: 121-136. https://doi.org/10.1016/0034-4257(91)90005-Q
  28. Hall, F. G., J. R. Townshend, and E. T. Engmann, 1995. Status of remote sensing algorithms for estimation of land surface parameters, Remote Sensing of Environment, 51: 138-156. https://doi.org/10.1016/0034-4257(94)00071-T
  29. Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. DiGirolamo, and K. J. Bayr, 2002. MODIS snow-cover products, Remote Sensing of Environment, 83: 181-194. https://doi.org/10.1016/S0034-4257(02)00095-0
  30. Hansen, M. C., D. P. Roy, E. Lindquist, B. Adusei, C. O. Justice, and A. Altstatt, 2008. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin, Remote Sensing of Environment, 112: 2495-2513. https://doi.org/10.1016/j.rse.2007.11.012
  31. Hilker, T., M. A. Wulder, N. C. Coops, J. Linke, G. McDermid, J. G. Masek, E. Gao, and J. C. White, 2009. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS, Remote Sensing of Environment, 113: 1613-1627. https://doi.org/10.1016/j.rse.2009.03.007
  32. Holben, B. N., 1986. Characteristics of maximumvalue composite images from temporal AVHRR data, International Journal of Remote Sensing, 7: 1417-1434. https://doi.org/10.1080/01431168608948945
  33. Jepsen, J. U., S. B. Hagen, K. A. Høgda, R. A. Ims, S. R. Karlsen, H. Tommervik, and N. G. Yoccoz, 2009. Monitoring the spatio-temporal dynamics of geometrid moth outbreaks in birch forest using MODIS-NDVI data, Remote Sensing of Environment, 113: 1939-1947. https://doi.org/10.1016/j.rse.2009.05.006
  34. Jin, S. and S. A. Sader, 2005. MODIS time-series imagery for forest disturbance detection and quantification of patch size effects, Remote Sensing of Environment, 99: 462-470. https://doi.org/10.1016/j.rse.2005.09.017
  35. Julien, Y. and J. A. Sobrino, 2010. Comparison of cloud-reconstruction methods for time series of composite NDVI data, Remote Sensing of Environment, 114: 618-625. https://doi.org/10.1016/j.rse.2009.11.001
  36. Kaufman, Y. J. and C. O. Justice, 1998. Algorithm Technical Background Document, MODIS Fire Products(Versions 2.2 Nov 10 1998) EOS ID#2741.
  37. Karathanassi, V., P. Kolokousis, and S. Ioannidous, 2007. A comparison study on fusion methods using evaluation indicators, International Journal of Remote Sensing, 28(10): 2309-2341. https://doi.org/10.1080/01431160600606890
  38. Key, C. H. and N. C. Benson, 1999. The Normalized Burned Ratio, a Landsat TM radiometric index of burn severity incorporating multi-temporal differencing.(http://nrmsc.usgs.gov/research/n dbr.htm)
  39. Kim, S. H., 2003. Validation of MODIS Leaf Area Index product at temperate forest in Central Korea. Master thesis, Department of Geoinformatic Engineering, Inha University, Republic of Korea.
  40. Kim, S. H., 2009. Development of an algorithm for detecting sub-pixel scale forest fires using MODIS data. Ph.D. thesis, Department of Geoinformatic Engineering, Inha University, Republic of Korea.
  41. Kim, S. H. and K. S. Lee, 2003. Local validation of MODIS global Leaf Area Index(LAI) product over temperate forest, Korean Journal of Remote Sensing, 19(1): 1-9. https://doi.org/10.7780/kjrs.2003.19.1.1
  42. Kim, S.H., S. J. Kang, and K. S. Lee, 2010. Comparison of fusion methods for generating 250 m MODIS image, Korean Journal of Remote Sensing, 26(3): 305-316. https://doi.org/10.7780/kjrs.2010.26.3.305
  43. Latifovic, R., Z. L. Zhu, J. Cihlar, C. Giri, and I. Olthof, 2004. Land cover mapping of North and Central America-Global Land Cover 2000, Remote Sensing of Environment, 89: 116-127. https://doi.org/10.1016/j.rse.2003.11.002
  44. Le Hegarat-Mascle, S. and C. Andre, 2009. Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical images, ISPRS Journal of Photogrammetry and Remote Sensing, 64: 351-366. https://doi.org/10.1016/j.isprsjprs.2008.12.007
  45. Loboda, T., K. J. O'Neal, and I. Csiszar, 2007. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data, Remote Sensing of Environment, 109: 429-442. https://doi.org/10.1016/j.rse.2007.01.017
  46. Luo, Y., A. P. Trishchenko, and K. V. Khlopenkov, 2008. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America, Remote Sensing of Environment, 112: 4167-4185. https://doi.org/10.1016/j.rse.2008.06.010
  47. Li, Z., J. Cihar, X. Zheng, L. Moreau, and H. Ly, 1996. The bidirectional effects of AVHRR measurements over boreal regions, IEEE Transactions on Geoscience and Remote Sensing, 34(6): 1308-1322. https://doi.org/10.1109/36.544556
  48. Myneni, R. B., S. Hoffman, Y. Knyazikhin, J. L. Privette, J. Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, G. R. Smith, A. Lotsch, M. Friedl, J. T. Morisette, P. Votava, R. R. Nemani, and S. W. Running, 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sensing of Environment, 83: 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3
  49. Pinzon, J., M. E. Brown, and C. J. Tucker, 2005. EMD correction of orbital drift artifacts in satellite data stream. In N. Huang and S. Shen(Eds.), The Hilbert-Huang transform and its applications(pp. 167-183). Hackensack NJ: World Scientific Publishing Co.
  50. Potter, C., S. Kloster, V. Genovese, and R. B. Mymeni, 2003. Satellite data help predict terrestrial carbon sinks, EOS, 84(46): 502-508. https://doi.org/10.1029/2003EO460003
  51. Potapov, P., M. C. Hansen, S. V. Stehman, T. R. Loveland, and K. Pittman, 2008. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sensing of Environment, 112: 3708-3719. https://doi.org/10.1016/j.rse.2008.05.006
  52. Robertson, D. M., R. A. Ragotzkie, and J. J. Magnuson, 1992. Lake ice records used to detect historical and future climatic changes, Climatic Change, 21(4): 407-427. https://doi.org/10.1007/BF00141379
  53. El Saleous, N. Z., E. F. Vermote, C. O. Justice, J. R. G. Townshend, C. J. Tucker, and S. N. Goward, 2000. Improvements in the global biospheric record from the advanced very high resolution radiometer, International Journal of Remote Sensing, 21: 1251-1278. https://doi.org/10.1080/014311600210164
  54. Simpson, J. J. and J. R. Stitt, 1998. A procedure for the detection and removal of cloud shadow from AVHRR data over land, IEEE Transactions on Geoscience and Remote Sensing, 65: 1-24.
  55. Stroeve, J., J. E. Bax, F. Gao, S. Liang, A. Nolin, and C. Schaaf, 2005. Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements, Remote Sensing of Environment, 94: 46-60. https://doi.org/10.1016/j.rse.2004.09.001
  56. Stroppiana, D., S. Pinnock, J. M. C. Pereira, and J. M. Grégoire, 2002. Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia, Remote Sensing of Environment, 82: 21-37. https://doi.org/10.1016/S0034-4257(02)00021-4
  57. Tian, Y., R. E. Dickinson, L. Zhou, X. Zeng, Y. Kai, R. B. Myneni, Y. Knyazikhin, X. Zhang, M. Friedl, H. Yu, W. Wu, and M. Shaikh, 2004. Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model, Journal of Geophysical Research, 109(D01):103.doi: 10.1029/2003JD003777.
  58. Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. E. Saleous, 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data, International Journal of Remote Sensing, 26: 4485-4498. https://doi.org/10.1080/01431160500168686
  59. White, M. A. and R. R. Nemani, 2006. Real-time monitoring and short-term forecasting of land surface phenology, Remote Sensing of Environment, 104: 43-49. https://doi.org/10.1016/j.rse.2006.04.014
  60. Yang, W., N. V. Shabanov, D. Huang, W. Wang, R. E. Dickinson, R. R. Nemani, Y. Knyazikhin, and R. B. Myneni, 2006. Analysis of leaf area index products from combination of MODIS Terra and Aqua data, Remote Sensing of Environment, 104: 297-312. https://doi.org/10.1016/j.rse.2006.04.016

Cited by

  1. Adaptive Contrast Stretching for Land Observation in Cloudy Low Resolution Satellite Imagery vol.28, pp.3, 2012, https://doi.org/10.7780/kjrs.2012.28.3.287
  2. 논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석 vol.37, pp.6, 2011, https://doi.org/10.7780/kjrs.2021.37.6.1.5