Effect of Different Fertilization on Physiological Characteristics and Growth Performances of Eucalyptus pellita and Acacia mangium in a Container Nursery System

시비처리가 Eucalyptus pellita와 Acacia mangium 용기묘의 생리 및 생장 특성에 미치는 영향

  • Cho, Min-Seok (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Lee, Soo-Won (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Bae, Jong-Hyang (Division of Horticulture and Pat Animal-Plant Science, Wonkwang University) ;
  • Park, Gwan-Soo (Department of Environment and Forest Resources, Chungnam National University)
  • 조민석 (국립산림과학원 산림생산기술연구소) ;
  • 이수원 (국립산림과학원 산림생산기술연구소) ;
  • 배종향 (원광대학교 원예.애완동식물학부) ;
  • 박관수 (충남대학교 산림환경자원학과)
  • Received : 2011.05.02
  • Accepted : 2011.06.17
  • Published : 2011.06.30

Abstract

The objective of this study was to find optimal nutrient condition of container seedling production of two tropical species for high seedling quality. This study was conducted to investigate photosynthesis, chlorophyll fluorescence, chlorophyll contents, and growth performances of container seedlings of Eucalyptus pellita and Acacia mangium growing under four different fertilization treatments (Con., $0.5\;g{\cdot}l^{-1}$, $1.0\;g{\cdot}l^{-1}$, and $2.0\;g{\cdot}l^{-1}$ fertilization). E. pellita showed outstanding photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $1.0\;g{\cdot}l^{-1}$ fertilization. Meanwhile, E. pellita showed the highest photosynthetic capacity, photochemical efficiency, and chlorophyll contents at $2.0\;g{\cdot}l^{-1}$ fertilization, as fertilization rate were increased, those of A. mangium increased. Like physiological characteristics, Both E. pellita at $1.0\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization were higher root collar diameter, height, biomass, and seedling quality index than other treatments. These results showed that E. pellita at $1\;g{\cdot}l^{-1}$ fertilization and A. mangium at $2.0\;g{\cdot}l^{-1}$ fertilization is optimal nutrient condition, respectively. Moreover, fertilization rate controlling is very important for growth and seedling quality of container seedling.

본 연구에서는 E. pellita와 A. mangium 용기묘를 대상으로 시비 처리에 따른 광합성, 엽록소 형광반응, 엽록소 함량 등의 생리적 특성 및 생장 특성 변화를 조사 분석하여 열대림 두 수종에 대한 시설양묘과정에서의 최적 시비 조건을 구명하고자 연구를 실시하였으며, 다음과 같은 결론을 얻을 수 있었다. 시비처리에 따른 E. pellita의 광합성 능력, 광화학 효율 및 엽록소 함량은 $1g{\cdot}l^{-1}$ 처리구에서 가장 우수하였으며, $2g{\cdot}l^{-1}$에서는 과량 시비로 인한 생육저하 현상으로 오히려 감소하는 경향을 나타냈다. A. mangium은 $2g{\cdot}l^{-1}$ 처리구에서 가장 우수한 광합성 능력, 광화학 효율 및 엽록소 함량을 보이면서 시비수준이 높을수록 우수한 능력을 나타냈다. 두 수종 모두 적정 시비 조건에서 높은 엽록소 함량과 광화학 효율에 의해 활발한 광합성 활동이 이루어졌다. 즉, 양분 조건에 따라 광합성 기구가 유동적으로 변하는 것을 알 수 있다. 근원경과 간장 생장 및 물질생산량 또한 E. pellita는 $1g{\cdot}l^{-1}$, A. mangium은 $2g{\cdot}l^{-1}$ 처리구에서 가장 우수하였으며, 생리적 특성과 같은 경향을 보였다. H/D율과 T/R율은 시비 처리구가 무시비 처리구보다 높은 값을 보였지만, 시비 처리 간 유의적 차이는 나타나지 않았다. 묘목품질지수는 두 수종 모두 위 결과와 같이 수종별로 적정 시비 처리구에서 가장 높았으며, 적정 시비 처리에 의해 생산 된 묘목 우수한 형질을 나타낸 것이다. 본 연구 결과를 종합해 보면, 열대 수종인 E. pellita와 A. mangium의 용기묘 양묘 시 시비 처리에 따른 양분 조건에 의한 생리 및 생장 특성의 변화를 볼 수 있었다. 양분 부족은 광합성 기구의 활동 감소에 의한 생장 저하가 초래되어 불량한 묘목이 생산되는 과정을 볼 수 있다. 즉, 양묘과정에서 수종별 양분 요구도에 맞는 생육환경조절은 시설양묘시업에 의한 건전한 묘목을 대량 생산함과 동시에 조림과정에서도 높은 활착과 생장으로 우수한 조림성과를 기대할 수 있을 것으로 판단된다. 또한 일률적인 시비를 실시하는 것이 아니라, 기간별 상대생장량을 조사하여 수종별 생장패턴에 따라 기간별로 양분 요구량에 맞는 집중, 효율적인 시비를 실시할 수 있을 것으로 기대된다. 이에 띠라 양묘과정에서의 환경적 측면과 함께, 비용 측면에서 이점이 있어 경제적으로도 묘목 생산비를 절감할 수 있을 것으로 판단된다.

Keywords

References

  1. Aranda, I., L. Gil, and J.A. Pardos. 2002. Physiological responses of Fagus sylvatica L. seedlings under Pinus sylvestris L. and Quercus pyrenaica Will. Overstories. For. Ecol. Manag. 162:153-164. https://doi.org/10.1016/S0378-1127(01)00502-3
  2. Amon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenol-oxidase in Beat vulgaris. Plant Physiol. 24(1):1-15. https://doi.org/10.1104/pp.24.1.1
  3. Bayala, J., M. Dianda, J. Wilson, S.J. Ouedraogo, and K. Sanon. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3):309-322. https://doi.org/10.1007/s11056-009-9149-4
  4. Bose, S., S.K. Herbert, and D.C. Fork. 1988. Fluorescence characteristics of photo inhibition and recovery in a sun and a shade species of the red algal genus Porphyra. Plant Physiol. 86(3):946-950. https://doi.org/10.1104/pp.86.3.946
  5. Broschat, T.K. 1995. Nitrate, phosphate, and potassium leaching from container-grown plants fertilized by several methods. Hortscience 30(1):74-77.
  6. Bumgarner, M.L., K.F. Salifu, and D.F. Jacobs. 2008. Sub irrigation of Quercus rubra seedlings : Nursery stock quality, media chemistry, and early field performance. Hortscience 43(7):2179-2185.
  7. Chirino, E., A. Vilagrosa, E.I. Hernandez, A. Matos, and V.R. Vallejo. 2008. Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. For. Ecol. Manag. 256:779-785. https://doi.org/10.1016/j.foreco.2008.05.035
  8. Cho, M.S. 2008. Effects of light intensity on physiological characteristics and growth performances of deciduous hardwood species distributed in the central temperate zone of korean forest. Chungnam national university Master's dissertation. p. 81.
  9. Choi, Y.B. and J.H. Kim. 1995. Change in needle chlorophyll fluorescence of Pinus densiflora and Pinus thunbergii treated with artificial acid rain. J. Korean For. Soc. 84(1):97-102.
  10. Compton, J., L.S. Watrud, L.A. Porteus, and S. DeGrood. 2004. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. For. Ecol. Manag. 196:143-158. https://doi.org/10.1016/j.foreco.2004.03.017
  11. Deans, J.D., W.L. Mason, M.G.R. Cannell, A.L. Sharpe, and L.J. Sheppard. 1989. Growing regimes for bareroot stock of Sitka spruce, Douglas fir and Scots pine. 1. Morphology at the end of the nursery phase. Forestry 62:53-60.
  12. Demmig, B. and O. Bjorkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of $O_2$ evolution in leaves of higher plants. Planta 171:171-184. https://doi.org/10.1007/BF00391092
  13. FAO. 2006. Global forest resources assessment 2005. Rome. Food and Agriculture Organization of United Nations.
  14. Frey, S.D., M. Knorr, J.L. Parrent, and R.T. Simpson. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. For. Ecol. Manag. 196: 159-171. https://doi.org/10.1016/j.foreco.2004.03.018
  15. Goncalves, J.L.M., J.L. Stape, J.-P. Laclau, and R.J. Bouillet. 2008. Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience. Southern Forests 70:105-118. https://doi.org/10.2989/SOUTH.FOR.2008.70.2.6.534
  16. Grossniclke, S.C. 2005. Importance of root growth in overcoming planting stress. New Forests 30:273-294. https://doi.org/10.1007/s11056-004-8303-2
  17. Hernandez, E.I., A. Vilagrosa, V.C. Luis, M. Llorca, E. Chirino, and V.R. Vallejo. 2009. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ. Exp. Bot. 67:269-276. https://doi.org/10.1016/j.envexpbot.2009.07.004
  18. Hiscox, J.D. and G.F. Israelstam. 1978. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57: 1332-1334.
  19. Houlton, B.Z., Y.P. Wang, P.M. Vitousek, and C.B. Field. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327-330. https://doi.org/10.1038/nature07028
  20. Hughes, A.P. and P.R. Freeman. 1967. Growth analysis using frequent small harvests. J. App. Ecol. 4:553-560. https://doi.org/10.2307/2401356
  21. Hwang, J.O., Y.H. Son, M.J. Vi, J.K. Byoun, J.H. Jung, and C.Y. Lee. 2003. Studies on relationship between composition and type of fertilizer and seedling (I. Influence on biomass, specific leaf area and chlorophyll content). J. Korea For. En. 22(2):44-53.
  22. Inagaki, M., Y. Inagaki, K. Kamo, and J. Titin. 2009. Fine-root production in response to nutrient application at three forest plantations in Sabah, Malaysia: higher nitrogen and phosphorus demand by Acacia mangium. J. For. Res. 14:178-182. https://doi.org/10.1007/s10310-009-0113-0
  23. Kim, P.G., Y.S. Yi, D.J. Chung, S.Y. Woo, J.H. Sung, and E.J. Lee. 2001. Effect of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Korean For. Soc. 90(4):476-487.
  24. Krause, G.H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis; The basics. Annu. Rev. Plant Physiol. Plant Mol. BioI. 42:313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  25. Kwon, K.W., M.S. Cho, G.N. Kim, S.W. Lee, and K.H. Jang. 2009. Photosynthetic characteristics and growth performances of containerized seedling and bare root seedling of Quercus acutissima growing at different fertilizing schemes. J. Korean. For. Soc. 98(3):331-338.
  26. Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23:187-261.
  27. Lee, S.W., J.H. Choi, S.K. Yoo, S.K. Kim, J.H. Bae, and H.S. Kyo. 2006. Effect of raw material properties on growth characteristics of broad-leaved container seedlings. J. Bio-Environ. Control 15(3):244-249.
  28. Lee, S.W., M.S. Cho, and G.N. Kim. 2010. Effect of different irrigation period on photosynthesis and growth performances of containerized seedling of Eucalyptus pellita and Acacia mangium. J. Korean For. Soc. 99(3):414-422.
  29. Lee Y.K., D.K. Lee, S,Y. Woo, P.S. Park, Y.H. Jang, and E.R.G Abraham. 2006. Effect of Acacia plantations on net photosynthesis, tree species composition, soil enzyme activities, and microclimate on Mt. Makiling. Photosynthetica 44(2):299-308. https://doi.org/10.1007/s11099-006-0022-9
  30. Leiva, M.J. and R. Fernandez-Ales. 1998. Variability in seedling water status during drought within a Quercus Ilex subsp. ballota population, and its relation to seedling morphology. For. Ecol. Manag. 111:147-156. https://doi.org/10.1016/S0378-1127(98)00320-X
  31. Lim, J.H., S.Y. Woo, M.J. Kwon, J.H. Chun, and J.H. Shin. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healty and declining korean Fir in Mt. Halla. J. Korean For. Soc. 95(6):705-710.
  32. Lloret, F., C. Casanovas, and J. Penuelas. 1999. Seedling survival of Mediterranean shrub land species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13(2):210-216. https://doi.org/10.1046/j.1365-2435.1999.00309.x
  33. Luis, V.C., M. Llorca, E. Chirino, E.I. Hernandez, and A. Vilagrosa. 2010. Differences in morphology, gas exchange and root hydraulic conductance before planting in Pinus canariensis seedlings growing under different fertilization and light regimes. Trees 24:1143-1150. https://doi.org/10.1007/s00468-010-0490-1
  34. Mackensen, J., D. Holscher, R. Klinge, and H. Foister. 1996. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. For. Ecol. Manag. 86: 121-128. https://doi.org/10.1016/S0378-1127(96)03790-5
  35. Mackinney, G. 1941. Absorption of light by chlorophyll solution. J. BioI. Chem. 140: 315-322.
  36. Oliet, J., R. Planelles, F. Artero, R. Valverde, D., Jacobs, and M.L. Segura. 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions:relative influence of seedling morphology and mineral nutrition. New Forests 37(3):313-331. https://doi.org/10.1007/s11056-008-9126-3
  37. Rascher, U., M. Liebig, and U. Luttge. 2000. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant, Cell Environ. 23(12): 1397-1405. https://doi.org/10.1046/j.1365-3040.2000.00650.x
  38. Reddel, P., M.J. Webb, D. Poa, and D. Aihuna. 1999. Incorporation of slow-release fertilisers into nursery media. New Forests 18(3):277-287. https://doi.org/10.1023/A:1006693308681
  39. Rural Development Administration (RDA). 2002. Standard analysis of media, Rural Development Administration. p. 191.
  40. SAS Institute Inc. 2000. SAS/STAT TM Guide for Personal Computer. Version 8 Edition. SAS Institute Inc., N.C. p. 1026.
  41. Sigmaplot. 2000. philscience. p. 136.
  42. Smethurst, P.J. 2010. Forest fertilization: Trends in knowledge and practice compared to agriculture. Plant Soil 335:83-100. https://doi.org/10.1007/s11104-010-0316-3
  43. Suitor, S., B.M. Potts, P.H. Brown, A.J. Gracie, K.D. Rix, and P.L. Gore. 2010. The impact of flower density and irrigation on capsule and seed set in Eucalyptus globulus seed orchards. New Forests 39(1):117-127. https://doi.org/10.1007/s11056-009-9159-2
  44. Sestak, Z., J. Catsk, and P. G. Jarvis. 1971. Plant Photosynthetic Production Manual of Methods. The Hague. Hertogenbosch. p. 818.
  45. Thirukkumaran, C.M. and D. Parkinson. 2002. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For. Ecol. Manag. 159:187-201. https://doi.org/10.1016/S0378-1127(01)00432-7
  46. Trubat, R., J. Cortina, and A. Vilagrosa. 2006. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. J. Arid Environ. 72(6):879-890.
  47. Tsakaldimi, M., T. Zagas, T. Tsitsoni, and P. Ganatsas. 2005. Root morphology, stem growth and field performance of seedlings of two Mediterranean evergreen oak species raised in different container types. Plant and Soil 278:85-93. https://doi.org/10.1007/s11104-005-2580-1
  48. Vitousek, P.M., K. Cassman, C. Cleveland, T. Crews, C.B. Field, N.B. Grimm, R.W. Howarth, R. Marino, L. Martinelli, and E.B. Rastetter. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57-58: 1-45.