Variation of the Overall Heat Transfer Coefficient of Plastic Greenhouse Covering Material

플라스틱온실 피복재의 관류열전달계수 변화

  • Received : 2011.05.31
  • Accepted : 2011.06.09
  • Published : 2011.06.30

Abstract

The objective of the present study is to provide the basic data necessary for estimating the overall heat transfer coefficient of commercial plastic greenhouse. The heat flow through covering of greenhouses was measured and the variation of overall heat transfer coefficient was analyzed. Because the inside-outside temperature difference of greenhouse to indicate the stabilized overall heat transfer coefficient was different depending on the number of covering layers, the actual overall heat transfer coefficient should be decided in range of inside-outside temperature difference to make the coefficient constant for each covering method. The variation trend of the overall heat transfer coefficient according to the inside-outside temperature difference corresponded with the existing research results, but the specific values of temperature difference to present the stabilized overall heat transfer coefficient were different each other. The increase rates of overall heat transfer coefficient with wind speed were quite dissimilar among several research results and the quantity of heat loss through covering according to the wind speed in the double layers covered or curtained greenhouse was less than that in the single layer covered greenhouse. Because there was large variations among the values of overall heat transfer coefficient for the polyethylene film greenhouses, it was required to establish the standardized environmental condition for experiment measuring heat flow through covering in commercial greenhouse.

본 연구는 국내 상업용 온실 피복재의 관류열전달계수를 산정히는데 필요한 기초자료를 제공하기 위하여 최근 국내에 많이 보급되어 사용되고 있는 플라스틱필름으로 피복된 온실에 대해 관류열량을 측정하고 관류열전달계수의 변화를 분석하였으며 그 결과를 요약하면 다음과 같다. 온실 내외부 온도차에 따른 관류열전달계수의 변화를 분석한 결과 피복의 층수에 따라 안정된 관류열전달계수를 나타내게 되는 온실 내외부 온도차의 값이 다르게 나타났기 때문에 온실 피복재에 대한 관류열전달계수를 결정할 때에는 피복층수별로 안정된 값을 나타내는 온실 내외부 온도차 범위에서의 관류열전달계수를 채택하여야할 것이다. 온도차이에 따른 관류열전달계수의 변화 경향은 기존의 연구결과와 잘 일치하였으나 안정된 값을 나타내는 온도차이의 구체적인 값은 다르게 나타났기 때문에 이에 대한 추가적인 연구가 필요할 것으로 판단된다. 풍속에 따른 관류열전달계수의 증가율은 연구자에 따라 많은 차이가 있음을 알 수 있었으며, 이중피복온실이나 커튼을 설치한 온실과 같이 보온성을 높인 온실은 일중피복온실에 비해 풍속에 따른 관류열 손실이 더 작다는 사실을 확인할 수 있었다. 관류열전달계수의 기존 연구결과들을 분석한 결과 연구자에 따라 값이 차이가 있었기 때문에 국내 온실의 정확한 난방부하량을 산정하는데 필요한 적절한 관류열전달계수를 제시하기 위해서는 우선 측정을 위한 표준화된 환경기준이 마련될 필요가 있으며, 또한 국내에서 실제로 사용되고 있는 주요 피복재별로 구체적인 관류열전달계수가 구해져야 할 것이다.

Keywords

References

  1. Abdel-Ghany, A.M. and T. Kozai. 2006. On the determination of the overall heat transmission coefficient and soil heat flux for a cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer. Energy Conversion and Management 47: 2612-2628. https://doi.org/10.1016/j.enconman.2005.10.024
  2. Albright, L.D., l. Seginer, L.S. Marsh, and A. Oko. 1985. In situ themlal calibration of unventilated greenhouse. J. agric. Engng Res. 31:265-281. https://doi.org/10.1016/0021-8634(85)90093-9
  3. ASABE. 2008. Heating, ventilating and cooling green houses. ASABE Standards.
  4. Feuilloley, P. and G. Issanchou. 1996. Greenhouse covering materials measurement and modeling of thermal properties using the hot box method, and condensation effects. J. agric. Engng Res. 65:129-142. https://doi.org/10.1006/jaer.1996.0085
  5. Garzoli, K.V. and J. Blackwell. 1981. An analysis of the nocturnal heat loss from a single skin plastic greenhouse. J. Agric. Engng Res. 26:203-214. https://doi.org/10.1016/0021-8634(81)90105-0
  6. Garzoli, K.V. and J. Blackwell. 1987. An analysis of the nocturnal heat loss from a double skin plastic greenhouse. J. Agric. Engng Res. 36:75-85.
  7. Hanan, J.J. 1998. Greenhouses-Advanced technology for protected horticulture. CRC Press, Boca Raton, FL, USA. p. 191-197.
  8. Japan Protected Horticulture Association. 1994. Handbook of protected horticulture. Japan Protected Horticulture Association. p.170-173(in Japanese).
  9. Kittas, C. 1994. Overall heat transfer coefficient of a greenhouse cover. Agricultural and forest Meteorology 69:205-221. https://doi.org/10.1016/0168-1923(94)90026-4
  10. Kwon, J.K., M.W. Cho, N.J. Kang, and Y.I. Kang. 2009. Effects of high performance greenhouse films on growth and fruit quality of tomato. Journal of Bio-Environment Control 18(3):232-237 (in Korean).
  11. Mihara, Y. and M. Hayashi. 1979. Studies on the insulation of greenhouses (I)-overall heat transfer coefficient of greenhouses with single and double covering usingseveral material curtains. J. Agr. Met. 35 (1):13-19(in Japanese). https://doi.org/10.2480/agrmet.35.13
  12. Minagawa, H. and K. Tachibana. 1982. The overall heat transfer of greenhouses covered with PE and PVC single layer - The heat insulation efficiency of greenhouses and their covering materials (1). J. Agr. Met. 38(1):15-22(in Japanese). https://doi.org/10.2480/agrmet.38.15
  13. Mistry of Food, Agriculture, Forestry, and Fisheries (MIFAFF). 2009. Status of vegetable production in South Korea(in Korean).
  14. Nijskens, J., J. Deltour, S. Coutisse, and A. Nissen. 1984. Heat transfer through covering materials of greenhouses. Agricultural and Forest Meteorology 33:193-214. https://doi.org/10.1016/0168-1923(84)90070-4
  15. Papadakis, G., D. Briassoulis, G. S. Mugnozza, G. Vox, P. Feuilloley, and J. A. Stolfers. 2000. Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J. Agric. Engng Res. 77(1):7-38. https://doi.org/10.1006/jaer.2000.0525
  16. Seginer, I., D. Kantz, U.M. Peiper, and N. Levav. 1988. Transfer coefficients of several polyethlene greenhouse covers. J. Agric. Engng Res. 39:19-37. https://doi.org/10.1016/0021-8634(88)90163-1