DOI QR코드

DOI QR Code

Geopung Copper Deposit in Ogcheon, Chungcheongbuk-do: Mineralogy, Fluid Inclusion and Stable Isotope Studies

거풍구리광상: 산출공물, 유체포유물 및 안정동위원소 연구

  • Yoo, Bong-Chul (Overseas Mineral Resources Department, Korea Institute of Geoscience and Mineral Resources) ;
  • You, Byoung-Woon (Department of geology and environmental sciences, Chungnam National University)
  • 유봉철 (한국지질자원연구원 광물자원본부) ;
  • 유병운 (충남대학교 지질환경과학과)
  • Received : 2011.04.18
  • Accepted : 2011.06.21
  • Published : 2011.06.28

Abstract

The Geopung Cu deposit consists of two subparallel quartz veins that till the NE-trending fissures in Triassic Cheongsan granite. The quartz veins occur mainly massive with partially cavity and breccia. They can be followed along strike for about 500 m and varies in thickness from 0.2 to 2.2 m. Based on the mineralogy and paragenesis of veins, mineralization of quartz veins can be divided into hypogene and supergene stages. Hypogene stage is associated with hydrothermal alteration minerals such as sericite, pyrite, quartz, chlorite, clay minerals and sulfides such as pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, stannite, chalcopyrite and galena. Supergene stage is composed of geothite. Fluid inclusion data from quartz indicate that homogenization temperatures and salinity of hypogene stage range from 163 to $356^{\circ}C$ and from 0.2 to 7.2 wt.% eq. NaCl, respectively. They suggest that ore forming fluids were progressively cooled and diluted from mixing with meteoric water. Sulfur (${\delta}^{34}S$: 4.3~9.2‰) isotope composition indicates that ore sulfur was derived from mainly magmatic source although there is a partial derivation from the host rocks. The calculated oxygen (${\delta}^{18}O$: 0.9~4.0‰) and hydrogen (${\delta}D$: -86~-69‰) isotope compositions suggest that magmatic and meteoric ore fluids were equally important for the formation of the Geopung Cu deposit and then overlapped to some degree with another type of meteoric water during mineralization.

거풍구리광상은 트라이아스기 청산화강암 내에 발달된 NE 계열의 열극대를 충진한 2개조의 석영맥으로 구성된 열수맥상광상이다. 본 광상의 석영맥은 주로 괴상으로 산출되며 일부 정동 및 각력상 조직이 관찰되고 연장성은 500 m, 맥폭은 0.2에서 2.2 m 정도이다. 이들 석영맥의 광화작용은 hypogene 시기와 supergene 시기로 구분된다. Hypogene 시기의 광물은 견운모, 황철석, 석영, 녹니석 및 점토광물로 구성된 열수변질광물과 황철석, 유비철석, 자류철석, 백철석, 섬아연석, 황석석, 황동석 및 방연석으로 구성된 황화광물이 관찰된다. Supergene 시기에는 침철석이 생성되었다. 유체포유물 자료에 의하면, 광화시기 광석광물의 침전과 관련된 균일화온도와 염농도는 각각 $163{\sim}356^{\circ}C$, 0.2~7.2 wt.% NaCl 로서 광화유체가 천수의 혼입에 의한 냉각과 희석작용이 있었음을 지시한다. 황(${\delta}^{34}S$: 4.3~9.3‰)의 기원은 주로 화성기원과 일부 모암내의 황에서 유래된 것으로 해석된다. 산소 (${\delta}^{18}O$: 0.9~4.0‰)와 수소(${\delta}D$: -86~-69‰) 동위원소값의 자료로 볼 때, 이 광상의 광화유체는 마그마 기원 또는 천수 기원의 유체로 생각되며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.

Keywords

References

  1. Ahn, J.S. Yim, D.J. and Cheong, Y.W. (2009) Seasonal variations of water quality within the waste impoundments of Geopung mine. Econ. Environ. Geol., v.42, p.207-216.
  2. Barret, T.J. and Anderson, G.M. (1988) The solubility of sphalerite and galena in 1-5 m NaCl solutions to $300^{\circ}C$. Geochim. Cosmochim.Acta., v.52, p.813-820. https://doi.org/10.1016/0016-7037(88)90353-5
  3. Bodnar, R.J. (1983) A method of calculating fluid inclusion volumes based on vapor bubble diameters and P-V-TX properties of inclusion fluids. Econ. Geol., v.78, p.535-542. https://doi.org/10.2113/gsecongeo.78.3.535
  4. Bodnar, R.J. and Vityk, M.O. (1994) Interpretation of microthermometric data for $H_{2}O$O-NaCl fluid inclusions: in De Vivo, B. and Frezzotti, M.L. eds., Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc., p.117-130.
  5. Cheong, Y.W., Yim, G.J., Ji, S.W., Park, H.Y., Min, D.S. and Park, I.W. (2008) Impact of the rain on the geochemical and hydrogical characteristics within a mine waste impoundment at the Geopung mine, Korea. Jour. Korean Soc. Geosys. Engin., v.45, p.495-504.
  6. Gammons, C.H. and Williams-Jones, A.E. (1995) The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at $300^{\circ}C$: New data on the stability of Au(I) chloride complexes in hydrothermal fluids. Geochim. Cosmochim. Acta.,v.59, p.3453-3468. https://doi.org/10.1016/0016-7037(95)00234-Q
  7. Kajiwara, Y. and Krouse, H.R. (1971) Sulfur isotope partitioning in metallic sulfide systems. Can. Jour. Earth Sci., v.8, p.1397-1408. https://doi.org/10.1139/e71-129
  8. Korea Mining Promotion Corporation (1971) Deposits of the Korea. p.179-180.
  9. Korea Mining Promotion Corporation (1972) Survey report of deposit's drilling. p.168-169.
  10. Korea Mining Promotion Corporation (1973) Survey report of exploration and mining. p.168-169.
  11. Kwon, S.T. and Lee, D.H. (1992) Petrology and geochemistry of the Ogcheon metabasites in Poun, Korea. Jour. Petrol. Soc. Korea, v.1, p.104-123.
  12. Lee, J.H. Kwon, S.H. Park, Y.D. Kwon, S.T. and Park, S.H. (2001) Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, v.20, p.850-867. https://doi.org/10.1029/2000TC001267
  13. Matsuhisa, Y. Goldsmith, R. and Clayton, R.N. (1979) Oxygen isotope fractionation in the system quartzalbite- anorthite-water. Geochimica et Cosmochimica Acta, v. 43, p. 1131-1140. https://doi.org/10.1016/0016-7037(79)90099-1
  14. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. H.L. Barnes. Geochemistry of hydrothermal ore deposits. 2nd ed, Wiley-Interscience. New York. p.509-567.
  15. Shepherd, T.J. Rankin, A.H. and Alderton, D.H.M. (1985) A practical guide to fluid inclusion studies. Blackie, 239p.