DOI QR코드

DOI QR Code

SPACELIKE MAXIMAL SURFACES, TIMELIKE MINIMAL SURFACES, AND BJÖRLING REPRESENTATION FORMULAE

  • 투고 : 2010.06.24
  • 발행 : 2011.09.01

초록

We show that some class of spacelike maximal surfaces and timelike minimal surfaces match smoothly across the singular curve of the surfaces. Singular Bj$\"{o}$rling representation formulae for generalized spacelike maximal surfaces and for generalized timelike minimal surfaces play important roles in the explanation of this phenomenon.

키워드

참고문헌

  1. J. A. Aledo and J. A. Galvez, A Weierstrass representation for linear Weingarten spacelike surfaces of maximal type in the Lorentz-Minkowski space, J. Math. Anal. Appl. 283 (2003), no. 1, 25-45. https://doi.org/10.1016/S0022-247X(03)00166-5
  2. J. A. Aledo, J. A. Galvez, and P. Mira, Bjorling Representation for spacelike surfaces with H = cK in $L^3$, Proceedings of the II International Meeting on Lorentzian Geometry, Publ. de la RSME 8 (2004), 2-7.
  3. L. J. Alias, R. M. B. Chaves, and P. Mira, Bjoring problem for maximal surfaces in Lorentz-Minkowski space, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 2, 289-316.
  4. V. I. Arnold, Lectures on Partial Differential Equations, Springer, Berlin, 2004.
  5. R. M. B. Chavez, M. P. Dussan, and M. Magid, Bjorling problem for timelike surfaces in the Lorentz-Minkowski space, arXiv:0906.2361.
  6. F. Dillen and W. Kuhnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), no. 3, 307-320. https://doi.org/10.1007/s002290050142
  7. F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-Minkowski space $L^3$, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 515-524. https://doi.org/10.1017/S0305004100075587
  8. I. Fernandez and F. J. Lopez, Periodic maximal surfaces in the Lorentz-Minkowski space ${\mathbb{L}}^3$, Math. Z. 256 (2007), no. 3, 573-601. https://doi.org/10.1007/s00209-006-0087-y
  9. S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, New maximal surfaces in Minkowski 3-space with arbitrary genus and their cousins in de Sitter 3-space, Results Math. 56 (2009), no. 1-4, 41-82. https://doi.org/10.1007/s00025-009-0443-4
  10. H. Karcher, Construction of Minimal Surfaces, Reports on Global Analysis XIII, Tokyo, 1989.
  11. Y. W. Kim, S.-E. Koh, H. Shin, and S.-D. Yang, Generalized surfaces with constant H/K in Euclidean three-space, Manuscripta Math. 124 (2007), no. 3, 343-361. https://doi.org/10.1007/s00229-007-0125-z
  12. Y. W. Kim and S.-D. Yang, Prescribing singularities of maximal surfaces via a singular Bjolring representation formula, J. Geom. Phys. 57 (2007), no. 11, 2167-2177. https://doi.org/10.1016/j.geomphys.2007.04.006
  13. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space ${\mathbb{L}}^3$, Tokyo J. Math. 6 (1983), no. 2, 297-309. https://doi.org/10.3836/tjm/1270213872
  14. S. Lee, Weierstrass representation for timelike minimal surfaces in Minkowski 3-space, arXiv:math/0608726v2.
  15. T. K. Milnor, Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan Math. J. 30 (1983), no. 3, 309-315. https://doi.org/10.1307/mmj/1029002907
  16. P. Mira and J. A. Pastor, Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math. 140 (2003), no. 4, 315-334. https://doi.org/10.1007/s00605-003-0111-9
  17. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

피인용 문헌

  1. Extremal surface with the light-like line in Minkowski space R 1 + ( 1 + 1 ) $R^{1+(1+1)}$ vol.2017, pp.1, 2017, https://doi.org/10.1186/s13661-017-0786-9
  2. Timelike Constant Mean Curvature Surfaces with Singularities vol.24, pp.3, 2014, https://doi.org/10.1007/s12220-013-9389-6
  3. Blackfolds, plane waves and minimal surfaces vol.2015, pp.7, 2015, https://doi.org/10.1007/JHEP07(2015)156
  4. Zero mean curvature surfaces in containing a light-like line vol.350, pp.21-22, 2012, https://doi.org/10.1016/j.crma.2012.10.024
  5. Mixed type surfaces with bounded mean curvature in 3-dimensional space-times vol.52, 2017, https://doi.org/10.1016/j.difgeo.2017.03.009
  6. Signature change in matrix model solutions vol.98, pp.8, 2018, https://doi.org/10.1103/PhysRevD.98.086015
  7. Analysis of Timelike Thomsen Surfaces pp.1559-002X, 2019, https://doi.org/10.1007/s12220-019-00166-7