DOI QR코드

DOI QR Code

REPRESENTING SEQUENCES ON PARABOLIC BERGMAN SPACES

  • Hishikawa, Yosuke (Department of general education Gifu National College of Technology)
  • 투고 : 2010.06.03
  • 발행 : 2011.09.01

초록

The parabolic Bergman space is the set of $L^p(\lambda)$-solution of the parabolic operator $L^{(\alpha)}$. In this paper, we study representin sequences on parabolic Bergman spaces. We establish a discrete version of the reproducing formula on parabolic Bergman spaces by using fractional derivatives of the fundamental solution of the parabolic operator.

키워드

참고문헌

  1. B. R. Choe and H. Yi, Representations and interpolations of harmonic Bergman functions on half-spaces, Nagoya Math. J. 151 (1998), 51-89. https://doi.org/10.1017/S0027763000025174
  2. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^p$, Representation theorems for Hardy spaces, pp. 11-66, Asterisque, 77, Soc. Math. France, Paris, 1980.
  3. Y. Hishikawa, Fractional calculus on parabolic Bergman spaces, Hiroshima Math. J. 38 (2008), no. 3, 471-488.
  4. Y. Hishikawa, M. Nishio, and M. Yamada, A conjugate system and tangential derivative norms on parabolic Bergman spaces, Hokkaido Math. J. 39 (2010), no. 1, 85-114. https://doi.org/10.14492/hokmj/1274275021
  5. M. Nishio, K. Shimomura, and N. Suzuki, ${\alpha}$-parabolic Bergman spaces, Osaka J. Math. 42 (2005), no. 1, 133-162.
  6. M. Nishio, N. Suzuki, and M. Yamada, Carleson inequalities on parabolic Bergman spaces, to appear in Tohoku Math. J.
  7. M. Nishio, N. Suzuki, and M. Yamada, Interpolating sequences of parabolic Bergman spaces, Potential Anal. 28 (2008), no. 4, 357-378. https://doi.org/10.1007/s11118-008-9082-8
  8. K. Nam, Representations and interpolations of weighted harmonic Bergman functions, Rocky Mountain J. Math. 36 (2006), no. 1, 237-263. https://doi.org/10.1216/rmjm/1181069497
  9. W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), no. 2, 633-660. https://doi.org/10.1090/S0002-9947-96-01383-9
  10. W. Rudin, Functional Analysis, Second edition, International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.