참고문헌
- F. Bayart, A class of linear fractional maps of the ball and their composition operators, Adv. Math. 209 (2007), no. 2, 649-665. https://doi.org/10.1016/j.aim.2006.05.012
- C. Bisi and F. Bracci, Linear fractional maps of the unit ball: A geometric study, Adv. Math. 167 (2002), no. 2, 265-287. https://doi.org/10.1006/aima.2001.2042
-
P. S. Bourdon and J. H. Shapiro, Cyclic composition operators on
$H^2$ , Operator theory: operator algebras and applications, Part 2 (Durham, NH, 1988), 43-53, Proc. Sympos. Pure Math., 51, Part 2, Amer. Math. Soc., Providence, RI, 1990. - P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.
- F. Bracci, M. D. Contreras, and S. Diaz-Madrigal, Classification of semigroups of linear fractional maps in the unit ball, Adv. Math. 208 (2007), no. 1, 318-350. https://doi.org/10.1016/j.aim.2006.02.010
- K. C. Chan and J. H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana Univ. Math. J. 40 (1991), no. 4, 1421-1449. https://doi.org/10.1512/iumj.1991.40.40064
-
X. Chen, G. Cao, and K. Guo, Inner functions and cyclic composition operators on
$H^2(B_n)$ , J. Math. Anal. Appl. 250 (2000), no. 2, 660-669. https://doi.org/10.1006/jmaa.2000.7091 - J. B. Conway, Function of One Complex Variable, Springer-Verlag, 1973.
- C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Roton, 1995.
- C. C. Cowen and B. D. MacCluer, Linear fractional maps of the ball and their composition operators, Acta Sci. Math. (Szeged) 66 (2000), no. 1-2, 351-376.
- N. S. Feldman, The dynamics of cohyponormal operators, Trends in Banach spaces and operator theory (Proc. Conf., Memphis, TN, 2001), 71-85.
- R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
- G. Godefroy and J. H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229-269. https://doi.org/10.1016/0022-1236(91)90078-J
- K. G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345-381. https://doi.org/10.1090/S0273-0979-99-00788-0
- K. G. Grosse-Erdmann, Recent developments in hypercyclicity, Rev. R. Acad. Cien. Serie A. Mat. 97 (2003), no. 2, 273-286.
-
L. Jiang and C. Ouyang, Cyclic behavior of linear fractional composition operators in the unit ball of
${\mathbb{C}^N$ , J. Math. Anal. Appl. 341 (2008), no. 1, 601-612. https://doi.org/10.1016/j.jmaa.2007.10.031 - C. Kitai, Invariant closed sets for linear operators, Thesis, Univ. of Toronto, 1982.
-
B. D. MacCluer, Iterates of holomorphic self-maps of the unit ball in
${\mathbb{C}^N$ , Michigan Math. J. 30 (1983), no. 1, 97-106. https://doi.org/10.1307/mmj/1029002792 - S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22.
-
W. Rudin, Function Theory in the Unit Ball of
${\mathbb{C}^n$ , Grundlehren Math. Wiss., vol. 241, Springer-Verlag, New York, 1980. - H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. https://doi.org/10.2307/2154883
- B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8
- B. Yousefi and H. Rezaei, Some necessary and sufficient conditions for Hypercyclicity Criterion, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 2, 209-216. https://doi.org/10.1007/BF02829627
- K. Zhu, Spaces of Holomorphic functions in the Unit Ball, Graduate Texts in Mathematics, 226. Springer-Verlag, New York, 2005.
피인용 문헌
- Hypercyclicity of weighted composition operators on a weighted Dirichlet space vol.59, pp.7, 2014, https://doi.org/10.1080/17476933.2013.809573
- Disjoint mixing linear fractional composition operators in the unit ball vol.353, pp.10, 2015, https://doi.org/10.1016/j.crma.2015.07.005
- HEREDITARILY HYPERCYCLICITY AND SUPERCYCLICITY OF WEIGHTED SHIFTS vol.51, pp.2, 2014, https://doi.org/10.4134/JKMS.2014.51.2.363
- Disjoint mixing composition operators on the Hardy space in the unit ball vol.352, pp.4, 2014, https://doi.org/10.1016/j.crma.2014.01.017
- Dynamics of composition operators on weighted Bergman spaces vol.27, pp.1, 2016, https://doi.org/10.1016/j.indag.2015.11.012