DOI QR코드

DOI QR Code

교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석

Pounding Characteristics of a Bridge Superstructure on Rubber Bearings

  • 최형석 (부산대학교 지진방재연구센터) ;
  • 김정우 (부산대학교 사회환경시스템공학부 토목공학) ;
  • 공영이 ((주)정신이앤시) ;
  • 정진환 (부산대학교 사회환경시스템공학부 토목공학) ;
  • 김인태 (부산대학교 사회환경시스템공학부 토목공학)
  • 투고 : 2010.11.09
  • 심사 : 2011.07.05
  • 발행 : 2011.08.31

초록

지진하중으로 인해 교량상부구조 간에 발생하는 충돌은 교량상부구조의 낙교, 교각의 파괴와 같은 국부적인 손상뿐만 아니라 교량전체시스템의 붕괴를 유발할 수 있다. 이와 같은 충돌의 영향은 신축이음부의 재질, 형태 및 교대부의 여유간격과 관계가 있는 것으로 알려져 있다. 본 논문에서는 교량상부구조 간에 발생하는 충돌에 대한 특성을 분석하기 위해 충돌해석 이론 중 가장 널리 활용되고 있는 접합요소 접근법(Linear Spring Model, Kelvin-Voigt Model, Hertz Model)에 대해서 고찰 하고 이를 실험적으로 검증하기 위해 탄성받침이 설치된 교량상부구조를 모형화한 콘크리트 교량모델에 대한 진동대 실험을 실시하였다. 기존의 충돌모델을 적용한 이론 해는 실험결과와 잘 부합되지 못하였으며, 이에 본 논문에서는 충돌강성에 적절한 적용계수 �� 를 이용하여 충돌 후 거동을 잘 모사할 수 있는 충돌강성 수준을 산출하였다. 충돌발생시 적절한 강성 및 재료의 동적특성, 충돌면의 형상 등에 따라 발생하는 충돌력의 크기가 달라지므로 이에 대한 추가적인 연구가 필요한 것으로 판단된다.

Seismic structure pounding between adjacent superstructures may induce the destruction of pier and bridge superstructures and cause local damage that leads to the collapse of the whole bridge system. The pounding problem is related to the expansion of joints, gap distance and seismic response of the abutments. In this research, methods of the contact element approach, the linear spring model, the Kelvin-Voigt model and the Hertz model were studied to analyse the pounding characteristics. The shaking table test for a model specimen such as a bridge superstructure with elastomeric bearings was performed to evaluate the contact element approach methods. Relationships between the time history response from the numerical analysis results and the measured response from the shaking table test are compared. The experimental results were not well matched with the numerical analysis results using the existing pounding stiffness models. Therefore, in this study, coefficients are proposed to calculate the appropriate pounding stiffness ratio.

키워드

참고문헌

  1. 阪神高速道路管理技術センタ-, 震災から復旧まで, 1997.
  2. ATC, Seismic retrofitting guidelines forhighway bridges, Report ATC-6-2, Applied Technology Council, Palo Alto, Calif, 1983.
  3. Leibovich, E., Rutenberg, A., Yankelevsky, D.Z., " Seismic pounding of adjacent single story symmetric structures," Proc., 10th European Conference on Earthquake Engineering, A.A. Balkema, Rotterdam, 1399-1404, 1995.
  4. Davis. R.0., "Pounding of Buildings Modelled by an Impact Oscillator," Earthquake Engineering and Structural Dynamics, Vol. 21, 253-274, 1992. https://doi.org/10.1002/eqe.4290210305
  5. Tanabe, T., Machida, A., Higai, T., Matsumoto, N., "General View of the Reasons for Seismic Damages for Bridge Piers and Columns of Elevated Bridges at Hyogoken-Nanbu earthquake," Structural Engineering World Congress, 1998, T153-4.
  6. Kajita, Y., Sugiura, K., Tsumura, Y., Maruyama, T., Watanabe, E., "Numerical Analysis on the Scenario of Girder Fall-off of Simple Span Elevated Bridge during Strong Ground Motions," Fifth Pacific Structural Steel Conference, Vol. 1, 583-588, 1998.
  7. Maison, B. F., and Kasai, K., "Analysis for Type of Structural Pounding," Journal of Structural Engineering, ASCE, Vol. 116, 957-975, 1990. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(957)
  8. Susendar Muthukumar, A Contact Element Approach with Hysteresis Damping for Analysis and Design of Pounding in Bridges, PhD Thesis, Georgia Institute of Technology, USA, 2003.
  9. Susendar Muthukumar, Reginald DesRoches, "A Hertz contact model with non-linear damping for pounding simulation," Earthquake Engineering and Structural Dynamics, Vol. 35, 811-828, 2006. https://doi.org/10.1002/eqe.557
  10. Wolf, J.P., and Skrikerud, P.E., "Mutual Pounding of Adjacent Structures During Earthquakes," Nuclear Engineering and Design, Vol. 57, 253-275, 1980. https://doi.org/10.1016/0029-5493(80)90106-5
  11. Anagnostopoulos, S. A., Spiliopoulos, K. V., "An investigation of earthquake induced pounding between adjacent buildings," Earthquake Engineering and Structural Dynamics, Vol. 21, 289-302, 1992. https://doi.org/10.1002/eqe.4290210402
  12. Jankowski, R., Wilde, K., Fuzino, Y., "Reduction of Earthquake Induced Effects of Pounding in Elevated Bridges," Proceedings of the Second World Conference on Structural Control, John Wiley & Sons, New York, Vol. 2, 933-939, 1999.
  13. Jing, H.S., Young, M., "Impact Interactions between Two Vibration Systems under Random Excitation," Earthquake Engineering and Structural Dynamics, Vol.20, 667-681, 1991. https://doi.org/10.1002/eqe.4290200706
  14. Pantelides, C. P., Ma, X., " Linear and Nonlinear Pounding of Structural Systems", Computers & Structures, Vol. 66, No. 1, 79-92, 1998. https://doi.org/10.1016/S0045-7949(97)00045-X
  15. Chau, K.T., Wei, X. X., "Pounding of Structures Modeled as Non-linear Impacts of Two Oscillators," Earthquake Engineering and Structural Dynamics, Vol. 30, 633-651, 2001. https://doi.org/10.1002/eqe.27
  16. Chau, K. T. Wei, X. X. Guo X , Shen, C. Y., "Experimental and theoretical simulations of seismic poundings between two adjacent structures," Earthquake Engineering and Structural Dynamics, Vol. 32, 537-554, 2003. https://doi.org/10.1002/eqe.231
  17. Robert Jankowski, "Experimental study on earthquake-induced pounding between structural elements made of different building materials," Earthquake Engineering and Structural Dynamics, Vol. 39, 343-354, 2010.
  18. Anxin, Guo., Zhongjun, L.i., Hui, L.i., Jinping, Ou., "Experimental and analytical study on pounding reduction of base-isolated highway bridges using MR dampers," Earthquake Engineering and Structural Dynamics, Vol. 38, 1307-1333, 2009. https://doi.org/10.1002/eqe.903
  19. Kun, Y.e., Li, L.i., Hongping, Zhu, "A note on the Hertz contact model with nonlinear damping for pounding simulation," Earthquake Engineering and Structural Dynamics, Vol. 38, 1135-1142, 2009. https://doi.org/10.1002/eqe.883
  20. 김정우, 정다정, 최형석, 정진환, "교량 상부구조물의 탄성받침 설치에 따른 충돌특성 분석," 한국지진공학회, 2010년 Workshop 및 대학원생 학술발표 517-520, 2010.

피인용 문헌

  1. Seismic Pounding Analysis of Bridge According to Soil Stiffness and Natural Frequency Ratio vol.18, pp.4, 2014, https://doi.org/10.5000/EESK.2014.18.4.193