DOI QR코드

DOI QR Code

Antioxidant and Anti-lipase Activity in Halocynthia roretzi Extracts

우렁쉥이 추출물의 항산화 및 리파아제 저해활성 효과

  • Kwon, Tae-Hyung (Gyeongbuk Institute for Marine Bio-Industry) ;
  • Kim, Jin-Ki (Food Science and Biotechnology Major, Andong National University) ;
  • Kim, Tae-Wan (Food Science and Biotechnology Major, Andong National University) ;
  • Lee, Jin-Wook (Gyeongbuk Institute for Marine Bio-Industry) ;
  • Kim, Jun-Tae (Gyeongbuk Institute for Marine Bio-Industry) ;
  • Seo, Hyun-Ju (Food Science and Biotechnology Major, Andong National University) ;
  • Kim, Min-Jeong (Food Science and Biotechnology Major, Andong National University) ;
  • Kim, Choong-Gon (Gyeongbuk Institute for Marine Bio-Industry) ;
  • Jeon, Deuk-San (Gyeongbuk Institute for Marine Bio-Industry) ;
  • Park, Nyun-Ho (Gyeongbuk Institute for Marine Bio-Industry)
  • 권태형 (경북해양바이오산업연구원) ;
  • 김진기 (안동대학교 식품생명공학과) ;
  • 김태완 (안동대학교 식품생명공학과) ;
  • 이진욱 (경북해양바이오산업연구원) ;
  • 김준태 (경북해양바이오산업연구원) ;
  • 서현주 (안동대학교 식품생명공학과) ;
  • 김민정 (안동대학교 식품생명공학과) ;
  • 김충곤 (경북해양바이오산업연구원) ;
  • 전득산 (경북해양바이오산업연구원) ;
  • 박년호 (경북해양바이오산업연구원)
  • Received : 2011.02.28
  • Accepted : 2011.04.22
  • Published : 2011.08.31

Abstract

Halocynthia roretzi is one of the most important cultured marine species on the southern coast of Korea. Samples were extracted using methanol (ME), ethanol (EE) and water (WE) to evaluate the antioxidant activities and antilipase activity in Halocynthia roretzi extracts. Antioxidant potentials of the samples were determined by poly-phenol content, flavonoid content, free radical scavenging activity, reducing potential, and chelating activity. The ME showed significant scavenging activity (1176 ${\mu}g/mL$ IC50 for DPPH, and 895 ${\mu}g/mL$ IC50 for ABTS assay). The IC50 for lipase inhibition activity was 12,021, 6,004, and 14,979 ${\mu}g/mL$ in the ME, EE, and WE, respectively. In conclusion, Halocynthia roretzi extracts exhibited antioxidant activities and anti-lipase activity. These results suggest that Halocynthia roretzi extracts can be potentially used as a source of antioxidant and antiobesity agents.

본 연구에서는 동해안에 서식하는 우렁쉥이의 식품산업의 소재와 기능성을 알아보기 위하여 우렁쉥이 추출물을 이용하여 이들로부터 활성산소종의 소거활성, 즉 항산화제와 비만 예방의 효능제로서 생리활성을 살펴보고자 하였다. 우렁쉥이의 에탄올, 메탄올, 물 추출물을 이용하여 폴리페놀 및 플라보노이드 함량을 측정한 결과 에탄올 추출물과 메탄올 추출물이 물 추출물보다 약 1.5배 높게 나타났고 플라보노이드 함량 또한 약 8배 이상 높게 나타났다. 항산화 효능을 측정한 결과 DPPH 라디칼 소거능에서는 메탄올 추출물이 1176.99 ${\mu}g/mL$로 가장 높았으며 물 추출물에 비해 약 2배정도 높은 효능을 보였다. ABTS 라디칼 소거능 활성을 측정한 결과 875.07 ${\mu}g/mL$로 메탄올 추출물이 가장 높은 효능을 보였고 DPPH 라디칼 소거능 활성과 유사한 경향을 보였다. 환원력 측정은 메탄올 추출물 31.7%, 에탄올 추출물 32.2% 그리고 물 추출물 26.4%의 순으로 나타났으며 금속 봉쇄력의 경우는 물 추출물이 가장 높은 활성을 보였다. 폴리페놀 함량이 높은 물질이 항산화 효능과의 상관관계가 있음을 알 수 있었고 지방 분해 측정 결과 에탄올 추출물이 6004.76 ${\mu}g/mL$, 메탄올 추출물이 12021.56 ${\mu}g/mL$로 측정되었으며 에탄올 추출물에는 지방 분해 억제 효과가 있는 것으로 생각된다. 결과적으로 우렁쉥이는 항산화 효과와 비만예방 개선과 다양한 식품 소재로의 활용 가능성이 있을 것으로 사료되며, 이러한 결과가 실제로 체내에서 적용되는지는 in vivo 연구를 통하여 살펴볼 필요가 있는 것으로 사료된다.

Keywords

References

  1. Kim SK, Choi KS, Son SM. Isolation and purification of natural antimicrobial peptides from Munggae, Halocynthia roretzi. Food Eng. Prog. 11: 54-59 (2007)
  2. Lim JH, Jung KS, Lee JS, Jung ES, Kim DK, Kim YS, Kim YW, Park DH. The study on antimicrobial and antifungal activity of the wild seaweeds of jeju island. J. Soc. Cosmet. Scientists Korea 34: 201-207 (2008)
  3. Lee KH, Hong BI, Choi BD, Kang SJ, Ruck JH, Jung BC. Utilization of pigments and tunic components of ascidian as an improved feed aids for aquaculture. J. Korean Fish Soc. 31: 423- 428 (1998)
  4. Tseng YC, Xiong YL, Webster CD. The preservation of the quality of the muscle in the frozen australian red claw crayfish (Cehrax quadricarinatus) by prestorage anti-oxidant dipping reatments. Int. J. Food Sci. Tech. 40: 841-848 (2005) https://doi.org/10.1111/j.1365-2621.2005.01004.x
  5. Proctor PH, Reynolds ES. Free radicals and disease in man. Physiol Chem. Phys. Med. NMR. 16: 175-195 (1984)
  6. Heo SJ, Park EJ, Lee KW, Jeon YJ. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technol. 96: 1613-1623 (2005) https://doi.org/10.1016/j.biortech.2004.07.013
  7. Heo SJ, Park PJ, Park EJ, Kim SK, Jeon YJ. Antioxidant activity of enzymatic extracts from a brown seaweed Ecklonia cava by electron spin resonace spectrometry and comet assay. Eur. Food Res. Technol. 221: 41-47 (2005) https://doi.org/10.1007/s00217-005-1187-3
  8. Yuan YV, Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 44: 1144-1150 (2006) https://doi.org/10.1016/j.fct.2006.02.002
  9. Liu R, Zhang JZ, Liu WC, Kimura Y, Zheng YN. Anti-obesity effects of protopanaxdiol types of ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia 81: 1079-1087 (2010) https://doi.org/10.1016/j.fitote.2010.07.002
  10. Jang YS, Jeong JM. Antioxidative effect and digestive enzyme inhibition of grape seed extract(GSE). J. Korean Soc. Food Sci. Nutr. 39: 783-788 (2010) https://doi.org/10.3746/jkfn.2010.39.6.783
  11. Apostolidis E, Lee CM. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated $\alpha$-glucosidase and $\alpha$- amylase inhibition. J. Food Sci. 75: H97-H102 (2010) https://doi.org/10.1111/j.1750-3841.2010.01544.x
  12. Yook HS, Kim JO, Choi JM, Kim DH, Cho SK, Byun MW. Changes of nutritional characteristics and serum cholesterol in rats by the intake of dietary fiber isolated from ascidian (Halocynthia roretzi) tunic. J. Korean Soc. Food Sci. Nutr. 32: 474-478 (2003) https://doi.org/10.3746/jkfn.2003.32.3.474
  13. Choi BD, Kang SJ, Lee KH. Quality improvement of rainbow trout with pigments and enzymatic hydrolysates of ascidian (Halocynthia roretzi) tunic. J. Korean Fish Soc. 29: 345-356 (1996)
  14. Oh KS, Kim JS, Heu MS. Food constituents of edible ascidians Halocynthia toretzi and Pyura michaleseni. J. Korean Food Sci. Technol. 29: 955-962 (1997)
  15. Folin O, Denis W. On phosphotungastic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12: 239-249 (1912)
  16. NFRI. Manuals of quality characteristic analysis for food quality evaluation (2). National Food Research Institute, Skuba, Japan. p. 61 (1990)
  17. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231- 1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Oyaizu M. Studies on products of browning reaction: antioxidant activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  20. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS. Development of inhibitors against lipase and $\alpha$-glucosidase from derivatives of monascus pigment. FEMS Microbiol. Lett. 276: 93-98 (2007) https://doi.org/10.1111/j.1574-6968.2007.00917.x
  21. Choi SY, Kim SY, Hur JM, Choi HG, Sung NJ. Antioxidant activity of solvent extracts from Sargassum thunbergii. J. Korean Soc. Food Sci. Nutr. 35: 139-144 (2006) https://doi.org/10.3746/jkfn.2006.35.2.139
  22. Lee SJ, Song EJ, Lee SY, Kim KBWR, Yoon SY, Lee CJ, Jung JY, Park NB, Kwak JH, Park JG, Kim JH, Choi JI, Lee JW, Byun MW, Ahn DH. Effects of γ-irradiation on antioxidant, antimicrobial activities, and physical characteristics of sargassum thunbergii extract. Korean J. Food Sci. Technol. 42: 431-437 (2010)
  23. Jo JE, Kim KH, Yoon MH, Kim NY, Lee C, Yook HS. Quality characteristics and antioxidant activity research of Halocynthia roretzi and Halocynthia aurantium. J. Korean Soc. Food Sci. Nutr. 39: 1481-1486 (2010) https://doi.org/10.3746/jkfn.2010.39.10.1481
  24. Jeong CH, Choi SG, Heo HJ. Analysis of nutritional components and evaluation of functinal activities of sasa borealis leaf tea. Korean J. Food Sci. Technol. 40: 586-592 (2008)
  25. Li H, Choi YM, Lee JS, Park JS, Yeon KS, Han CD. Drying and antioxidant characteristics of the shiitake (Lentinus edodes) mushroom in a conveyer-type far-in-frared dryer. J. Korean Soc. Food Sci. Nutr. 36: 250-254 (2007) https://doi.org/10.3746/jkfn.2007.36.2.250
  26. Ji EJ, Yoo KM, Park JB, Hwang IK. Preparation of citron peel tea containing Yuza (Citrus junos SIEB ex TANAKA) and its antioxidant characteristics. Korean J. Food Cookery Sci. 24: 460- 465 (2008)
  27. Woo KS, Song SB, Ko JY, Seo MC, Lee JS, Kang JR, Oh BG, Nam MH, Jeong HS, Lee JS. Antioxidant components and antioxidant activities of methanolic extract from adzuki beans (Vigna angularis var. nipponensis). Korean J. Food Sci. Technol. 42: 693-698 (2010)
  28. Lee SH, Kim KN, Cha SH, Ahn GN, Jeon YJ. Comparison of antioxidant activities of enzymatic and methanolic extracts from Ecklonia cava stem and leave. J. Korean Soc. Food Sci. Nutr. 35: 1139-1145 (2006) https://doi.org/10.3746/jkfn.2006.35.9.1139
  29. Sa YJ, Kim JS, Kim MO, Jeong HJ, Yu CY, Park DS, Kim MJ. Comparative study of electron donating ability, reducing power, antimicrobial activity and inhibition of $\alpha$-glucosidase by sorghum bicolor extracts. Korean J. Food Sci. Technol. 42: 598-604 (2010)
  30. Yoo MY, Kim SK, Yang JY. Characterizatio of an antioxidant from sporophyll of undaria pinnatifida. Kor. J. Microbiol. Biotechnol. 32: 307-311 (2004)

Cited by

  1. Antioxidant Activity of Extracts and Fractions from Aster scaber vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1197
  2. Evaluation of Antioxidant and Anti-Inflammatory Activities of Ascidian Tunic Carotenoids As a Source of Color Cosmetics vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.36
  3. Antioxidative Effect of Extracts from Different Parts of Kohlrabi vol.57, pp.4, 2014, https://doi.org/10.3839/jabc.2014.056
  4. Nutritional composition and functionality of mixed cereals powder vol.21, pp.3, 2014, https://doi.org/10.11002/kjfp.2014.21.3.388
  5. Engl.) during fermentation vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.037
  6. ) Hydrolysates Induce Apoptosis in Human Colon Cancer HT-29 Cells through Activation of Reactive Oxygen Species pp.1532-7914, 2019, https://doi.org/10.1080/01635581.2018.1540717