DOI QR코드

DOI QR Code

Analysis of Aroma Patterns in Muskmelon at Different Storage Temperatures Using a Mass Spectrometry-based Electronic Nose

질량분석기 기반 전자코를 이용한 저장 온도별 머스크멜론의 향기 패턴 분석

  • Received : 2011.01.26
  • Accepted : 2011.05.17
  • Published : 2011.08.31

Abstract

Changes in the flavor of muskmelons stored at different temperatures were examined to judge aroma patterns during storage. A mass-spectrometry based electric nose was used to distinguish the subtle differences in the muskmelon's volatile compounds. The data were used for a discriminant function analysis (DFA), and then the partial least square algorithm was used for a quantitative analysis. Volatile components in the muskmelons increased with storage, and the first discriminant function score (DF1: $r^2$=99.88%, F=3072.5) moved from a positive position to a negative position as the storage period increased. The proper point of maturity was anticipated as the $28^{th}$ day at 0$^{\circ}C$, $21^{st}C$ day at 4 and 7$^{\circ}C$, and $14^{th}$ day at 10$^{\circ}C$. Also, using the DF1 score we could predict the general tendency (vitamin C, stem moisture, acidity) of the muskmelons. The electronic nose revealed that the major volatile compounds that changed during storage of the melons were ethyl ethyl acetate, butyl acetate, nonanol, dodecanoic acid, hexadecanoic acid and tricosane. The amount of volatile compounds detected increased during storage.

머스크멜론의 저장온도 차이에 따른 저장 중 미세한 향기성분의 변화를 질량분석기 기반 전자코를 이용하여 품질 변화 정도를 판단하였다. 저장기간이 증가함에 따라 향기성분이 변화하면서 휘발성분이 증가하였는데, 판별함수분석 결과 DF1값이 99.8%로 큰 영향을 받았으며 향기성분의 변화가 크게 나타날수록 DF1 값이 음의 방향으로 이동하였다. 이후 DF1 뿐만 아니라 DF2도 음의 값으로 변하면서 저장 초기와는 확연히 다른 향기성분의 변화가 일어난 것으로 판단된다. 0$^{\circ}C$ 저장에서는 28일, 4와 7$^{\circ}C$에서는 21일, 10$^{\circ}C$에서는 14일까지 저장 초기와 유사한 향기성분을 나타났으며, 이는 저장 온도가 낮아질수록 휘발성분의 변화가 적게 일어났다. 이러한 향기성분의 변화는 머스크멜론이 저장 중숙기가 지나고 노화가 진행되어지면서 일어난 것으로 유추된다. 또한 전자코로 분석한 DF1 값을 이용하여 일반성분들(비타민 C 함량, 꼭지 수분함량, 산도)의 저장 중 경향도 예측 가능 하였다. 머스크멜론의 저장 중 변화하는 전자코의 mass spectrum에 나타난 주요 향기성분은 이미 보고된 GC/MS의 분석 결과와 유사한 ethyl acetate, butyl acetate, nonanol, dodecanoic acid, hexadecanoic acid, tricosane과 같은 성분들로 나타났으며, 저장 중 전자코에 감지되는 양은 계속적으로 증가하였다.

Keywords

References

  1. Ishikawa Y. Utilization of functional materials in fruits (in Japanese). Fruit in Japan. Kazusa Press, Chiba, Japan. pp. 20-47 (1996)
  2. Hodgins D, Simmonds D. Sensory technology for flavor analysis. Cereal Food. World 40: 186-191 (1995)
  3. Choi HD. Use and development of sensation sensor. Bull. Food Technol. 8: 122-131 (1995)
  4. Kim SL. Flavor analysis of food by electronic nose. Food Sci. Ind. 30: 126-133 (1997)
  5. Vincent D. Electronic nose: Principal and application. Nature 402: 351-352 (1999) https://doi.org/10.1038/46421
  6. Chung SJ, Lim CR, Noh BS. Understanding the sensory characteristics of various types of milk using descriptive analysis and electronic nose. Korean J. Food Sci. Technol. 40: 47-55 (2008)
  7. Biswas S, Heidselmen K, Wohltjin H, Staff C. Differentiation of vegetable oils and detemination of sunflower oil oxidation using a surface acoustic wave sensing device. Food Control 15: 19-26 (2004) https://doi.org/10.1016/S0956-7135(02)00163-9
  8. Kim KS. Study of discrimination of authenticity for sesame oil and improvement of distribution system. KFDA Research Rep. Korea 8: 2165-2166 (2004)
  9. Bartlett PN, Elliott JM, Gardner JW. Electronic nose and their application in the food industry. Food Technol.-Chicago 51: 44-48 (1997)
  10. Vinaixa M, Vergara A, Duran C, Llobet E, Badia C, Brezmes J, Vilanova X, Correig X. Fast detection of rancidity in potato crisps using e-noses based on mass spectrometry or gas sensors. Sensor Actuator. 106: 67-75 (2005) https://doi.org/10.1016/j.snb.2004.05.038
  11. Yong SS. Food value of muskmelon. RDA, Suwon, Korea. pp. 1- 3 (2008)
  12. Jerry NC, Charles RS. Influence of stems, petioles and leaves on the phenolic content of concord and aroma blane juice and wine. J. Food Sci. 53: 173-175 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb10202.x
  13. Rymal KS, Wolford RW. Changes in volatile flavor constituents of canned single-strength orange juice as influenced by storage temperature. Food Technol.-Chicago 22: 1592-1601 (1968)
  14. Horvat RJ, Senter SD. Identification of additional volatile compounds from Cantaloupe. J. Food Sci. 52: 1097-1098 (1987) https://doi.org/10.1111/j.1365-2621.1987.tb14284.x
  15. Wyllie SG, Leach DN. Aroma volatiles of Cucumis melo cv. Golden Crispy. J. Agr. Food Chem. 38: 2042-2044 (1990) https://doi.org/10.1021/jf00101a008
  16. Kemp TR, Knavel DE, Stoltz IP. Characterization of some volatile components muskmelon fruit. Phytochemistry 10: 1925-1928 (1971) https://doi.org/10.1016/S0031-9422(00)86460-2
  17. Food Code. Korea Foods Industry Association. Moonyongsa Co., Seoul, Korea. pp. 637-643 (1998)
  18. AOAC. Official Methods of Analysis. 16th ed. Method 967.22. Association of Official Analytical Communities, Arlington, VA, USA (1995)
  19. Koh JS, Yang SH, Kim SH. Cold storage of Citrus unshiu Marc. var. okitsu produced in Cheju. Korean J. Postharv. Sci. Technol. 3: 105-111 (1996)
  20. Park JD, Hong SI, Park HW, Kim DM. Extending shelf-life of oriental melon by modified atomosphere packaging. Korean J. Food Sci. Technol. 32: 481-490 (2000)
  21. Yoon PH, Jung DS, Lee SK. Causal factors of black stain during cold storage of pear (Pyrus pyrifolia cv. Niitaka) and its postharvest control. Korean J. Food Preserv. 10: 447-453 (2003)
  22. Wang Y, Wyllie SG, Leach DN. Chemical changes during the development an ripening of the fruit of Cucumis melo. J. Agr. Food Chem. 44: 210-216 (1996) https://doi.org/10.1021/jf9503568
  23. Jung JH, Jung ST. Odor threshold and agreeability of aroma components of yakju. J. Korean Soc. Appl. Biol. Chem. 30: 272-277 (1987)
  24. Yabumoto K, Jennings WG. Volatile constituents of cantaloupe, Cucumis melo, and their biogisenes. J. Food Sci. 42: 32-37 (1977) https://doi.org/10.1111/j.1365-2621.1977.tb01212.x
  25. Maul F, Sargent SA, Sims CA, Baldw EA, Balaban MO, Huber DJ. Storage temperature affects ripe tomato flavor and aroma (abstract no. 34B-55). In: Abstracts: 98th Institute of Food Technologists. Oct 22-24, Tradeshow conference, Atlanta, USA (1998)
  26. Gomez AH, Wang J, Hu G, Pereira AG. Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT-Food Sci. Technol. 40: 681-689 (2007) https://doi.org/10.1016/j.lwt.2006.03.010
  27. Tokusoglu O, Balaban MO. Evaluation of odor and color changes of muscadine grape stored at different temperatures by electronic nose and computer vision(abstract no. 39B-18). In: Abstracts: Institute of Food Technologists 2000 annual meeting. Nov 6-10, Tradeshow conference, Dallas, USA (2000)
  28. Natale CD, Macagnano A, Martinelli E, Paolesse R, Proietti E, D'Amico A. The evaluation of quality of post-harvest oranges and apple by means of an electronic nose. Sensor. Actuat. B.- Chem. 78: 26-31 (2001) https://doi.org/10.1016/S0925-4005(01)00787-0

Cited by

  1. Changes in Organic acids, Free Sugars, and Volatile Flavor Compounds in Fig (Ficus carica L.) by Maturation Stage vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.1016
  2. Fragrance Characteristics of Cotton Knits Treated with Microcapsule Containing Citrus unshiu Oil -Focused on the Relationship between Electronic Nose Analysis and Subjective Sensation- vol.53, pp.3, 2016, https://doi.org/10.12772/TSE.2016.53.143
  3. Classification of Aroma Using Neural Network vol.23, pp.5, 2013, https://doi.org/10.5391/JKIIS.2013.23.5.431