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M-SCOTT CONVERGENCE AND M-SCOTT

TOPOLOGY ON POSETS

Wei Yao

Abstract. For a subset system M on any poset, M-Scott notions,
such as M-way below relation, M-continuity, M-Scott convergence
(of nets and filters respectively) and M-Scott topology are pro-
posed. Any approximating auxiliary relation on a poset can be
represented by an M-way below relation such that this poset is
M-continuous. It is shown that a poset is M-continuous iff the M-
Scott topology is completely distributive. The topology induced by
the M-Scott convergence coincides with the M-Scott topology. If
the M-way below relation satisfies the property of interpolation,
then a poset is M-continuous if and only if the M-Scott conver-
gence coincides with the M-Scott topological convergence. Also,
M-continuity is characterized by a certain Galois connection.

1. Introduction

In the past forty years, the concept of a continuous lattice and its
generalizations have attracted more and more attention. It was the
pioneering work of D. Scott [22, 23] which lead to the discovery that
algebraic lattices and their generalizations, continuous lattices, could be
used to assign meanings to programs written in high-level programming
languages. In pure mathematical aspect, many researchers try to es-
tablish the results in continuous lattice to some general poset, such as
dcpos or arbitrary posets. In order to do so, generalized Scott notions
should be given firstly. Different researchers focus on different aspects.
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(1) Generalization of way below relation, continuity and Scott topol-
ogy. The way below relation and continuity were firstly defined on/for
complete lattice and then on/for dcpos. In [8], related to three families
of subset systems Im(L) of different ideals, three types of generalized way
below relation (resp., generalized continuity, generalized Scott topology)
were respectively defined and studied on arbitrary posets, namely sm-
way below relation (resp., sm-continuity, sm-topology) (m=1,2,3). It is
shown in [8], a poset is sm-continuous iff the sm-topology is completely
distributive (m=1,2,3). Also, ‘sm-continuous’ was characterized by cer-
tain Galois connections. The way below relation and the Scott topology
on posets in [12, 32] just are the s3-way below and s3-topology respec-
tively. In [32], it is also shown that a poset is continuous iff the Scott
topology is completely distributive via sobrification.

(2) Generalization of Scott convergence. Since on any complete lattice
or dcpos, the Scott topology can be characterized by Scott convergence
of both nets and filters, the Scott convergence has been generalized by
many authors. For the filter-theoretical one, three types of Scott conver-
gence, namely sm-convergence was defined and studied in [8] (m=1,2,3).
A kind of Scott convergence, called s-convergence(=s1-convergence in
[8]), is also defined and studied in [30]. For the net-theoretical one,
Scott convergence on arbitrary posets is defined and studied in [35] and
then M-Scott convergence in [36] related to a subset system M.

(3) Generalization of distributivity. Since a continuous lattice (resp.,
a completely distributive lattice) is a complete lattice that satisfies the
directed distributive law (resp., completely distributive law). Many au-
thors focus on the distributive law and generalized continuous lattices
as well as completely distributive lattice to M-distributive lattices or
M-continuous lattices for M a subset system [2, 4, 7, 27, 33].

(4) Z-continuous posets. The background for the categorical equiva-
lence between completely distributive lattices and domains due to Hoff-
mann [14] and Lawson [17]. It is therefore natural to give a presenta-
tion of these matters in a more general framework: the category of Z-
continuous posets. The study of Z-continuity was suggested by Wright
and Wagner [31], and then widely studied in [3, 5, 9, 19, 24, 26, 31].

The aim of this paper is to study M-continuity, M-Scott topology
and M-Scott convergence (w.r.t. both nets and filters) on arbitrary
poset for a subset system M.

This paper is organized as follows. In Section 2, we make a prepara-
tion for the whole paper. In Section 3, we define M-way below on any
poset and then introduce a concept of anM-continuous poset. We show
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that any approximating auxiliary relation on a poset can be represented
by an M-way below relation such that this poset is M-continuous. In
Section 4, we propose a definition ofM-Scott topology and show that a
poset is M-continuous iff the M-Scott topology is completely distribu-
tive. In Section 5, we studyM-Scott convergence of nets and filters. We
show that the topology induced by the M-Scott convergence coincides
with the M-Scott topology. If the M-way below relation satisfies the
property of interpolation, then a poset is M-continuous if and only if
the M-Scott convergence coincides with the M-Scott topological con-
vergence. In Section 6,M-continuity is characterized by a certain Galois
connections. In Section 7, for a complete lattice L, the M-continuity is
characterized by a kind of distributivity.

2. Preliminaries

In this paper, L always denotes a poset unless otherwise stated.
By an ideal of L, we mean a nonempty directed lower subset of L.

By a subset system of a poset L, we mean a family M of subsets of L
such that for all x ∈ L, x =

∨
M for some M ∈M.

Three basic subset systems are family of finite subsets F(L), family
of directed sets D(L) and family of all subsets P(L), respectively.

In [8], the following three subset systems are considered:
I1(L) = {I ⊆ L| I is a Frink ideal},
I2(L) = {I ⊆ L| I is an ideal},
I3(L) = {I ⊆ I2(L)| I has a join},

where a Frink ideal [10] of L is a subset I ⊆ L such that for any finite
subset Z ⊆ I, the cut Zδ (i.e., the intersection of all principle ideals
containing Z) is also contained in I. By definition, I1(L) ⊇ I2(L) ⊇
I3(L). In ∨-semilattices with 0, I1(L) coincides with I2(L), while in
dcpos, I2(L) is identical with I3(L). Hence in a complete lattice L, all
three systems agree with the usual ideal lattice

I(L) = {I ⊆ L| I 6= ∅, x ∨ y ∈ I ⇔ x ∈ I and y ∈ I}.

In the following, we will fix some notations related to a subset A and
a subfamily S of 2L.
Au = {x ∈ L| ∀a ∈ A, a ≤ x};
Al = {x ∈ L| ∀a ∈ A, a ≥ x};
Aul = (Au)l, Alu = (Al)u;

S l =
⋃
{Sl| S ∈ S} and Su =

⋃
{Su| S ∈ S};
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IA = {I ⊆ L| I is an ideal containing A} and IA =
⋂
IA in (2L, ⊆)

(Notice that if IA = ∅, then IA = L).

Remark 2.1. (1) ∅l = ∅u = L.
(2) Both (u, l) and (l, u) form Galois connections [13] (p. 129) on 2L

in sense of Ore [21], i.e., antitone Galois connections. Thus (
⋃
iAi)

u =⋂
iA

u
i , (

⋃
iAi)

l =
⋂
iA

l
i for all {Ai| i ∈ I} ⊆ 2L.

(3) Aulu = Au, Alul = Al and (Aul)ul = Aul, (Alu)lu = Alu.
(4) Al =

⋂
{↓ x| x ∈ A}, Au =

⋂
{↑ x| x ∈ A}.

(5) Aul =
⋂
{↓ x| x ∈ Au} (which is exactly equal to Aδ, the cut [10]

of A) and Alu =
⋂
{↓ x| x ∈ Al} (Notice that

⋂
∅ = L in (2L, ⊆)). If A

has a join (resp., a meet) a, then Aul =↓ a (resp., Alu =↑ a.)

Lemma 2.2. (1) For any A ⊆ L, IA ⊆ Aul.
(2) If A is finite (and nonempty), then IA = Aul.
(3) If A ⊆ B ⊆ IA, then Aul = Bul and IA = IB.

Proof. (1) If Au = ∅, then Aul = L ⊇ IA. If Au 6= ∅, then IA 6= ∅.
By Remark 2.1(4), IA ⊆ Aul.

(2) We only need to show that Aul ⊆ IA for IA 6= ∅. Suppose that
a ∈ Aul and I ⊆ L is an ideal with A ⊆ I. Since A is finite, there exists
an upper bound x of A in I. Then x ∈ Au and then a ≤ x, which implies
that a ∈ I since I is a lower set.

(3) Suppose that A ⊆ B ⊆ IA. By (1) and Remark 2.1(2)(3),
Aul ⊆ Bul ⊆ IulA ⊆ (Aul)ul = Aul. Thus Aul = Bul. If IA = ∅, then
IB = ∅ and in this case IA = IB = L. Otherwise, we have IA ⊆ IB. For
any I ∈ IA, we have B ⊆ IA ⊆ I and then IB ⊆ I. By the arbitrariness
of I, we have IB ⊆ IA. Hence IA = IB. �

The above Im(L)(m = 1, 2, 3) lead to three different generalizations of
Scott convergence and Scott topology in arbitrary poset, and were called
sm-convergence and sm-topology (m = 1, 2, 3), respectively. Likewise,
the concept of continuous lattices extended in a threefold manner to that
of an sm-continuous poset: using the way below ideals

↓↓my =
⋂
{I ∈ Im(L)| y ∈ Iδ}.

A poset L is called sm-continuous if each of the set ↓↓my is directed and
has join y.

In this paper,M always denotes a subset system of a poset L. For a
subset system M of L, we define

IM = {A ⊆ L| M ⊆ A ⊆ IM for some M ∈M}.
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Proposition 2.3. The assignment M 7→ IM is a closure operator

on (2(2L), ⊆).

Proof. Obviously, the assignment is increasing and order-preserving.
In what follows, we need to show that IM ⊇ IIM for any subset system
M of L. In fact, ∀A ∈ IIM , there exists B ∈ IM such that B ⊆ A ⊆ IB
and for B ∈ IM, there exists M ∈ M such that M ⊆ B ⊆ IM . By
Lemma 2.2, it follows that M ⊆ B ⊆ A ⊆ IB = IM . Hence A ∈ IM. �

3. M-way below relations and M-continuity

3.1. M-way below relation and M-continuous posets

Definition 3.1. For x, y ∈ L, we call x isM-way below y, in symbols
x�M y, if y ∈Mul implies x ∈ IM for any M ∈M.

For x ∈ L, put ↓↓Mx = {y ∈ L| y �M x}. Then ↓↓Mx =
⋂
{IM |M ∈

M, x ∈Mul}.

Remark 3.2. (1) In [8], x�1 y implies x�I1(L) y and for m = 2, 3,
�Im(L)=�m.

(2) �M=�IM .

Proposition 3.3. (1) If L has 0, then 0�M x for all x ∈ X;
(2) x�2 y =⇒ x�M y;
(3) x�M y =⇒ x ≤ y;
(4) u ≤ x�M y ≤ v =⇒ u�M v;
(5) In a ∨-semilattice, x�M z, y �M z imply x ∨ y �M z.

Proof. (1) Trivial since each ideal contains 0.
(2) Suppose that x� y and y ∈Mul, where M ∈M. For each ideal

I ⊇M , we have y ∈ Iul and then x ∈ I. Hence x�M y.
(3) Suppose that x �M y. Clearly, y =

∨
M for some M ∈ M.

Then y ∈Mul and x ∈ IM ⊆↓ y, x ≤ y.
(4) and (5) are trivial. �

Remark 3.4. (1) For two subset systems M1, M2, if M1 ⊆ M2,
then �M2⊆�M1 . The least (resp., the largest) M-way below relation
on L is �2 (resp., ≤), one of the corresponding subset systems is I2(L)
(resp., 2L).

(2) For a family of subset systems {Mi| i ∈ I}, if they induce a same
M-way below relation ≺, then �⋃

iMi
=≺. Thus in all subset systems

which induce a same M-way below relation, there is a largest one.
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When we define some types of continuity, the following four conditions
are always considered:

(M1) ∀x ∈ L, ↓↓Mx ∈ IM;

(M2) ∀x ∈ L, ↓↓Mx is an ideal;

(APP) x =
∨ ↓↓Mx for each x ∈ X;

(INT) �M has the property of interpolation, that is ∀x, y ∈ L, if
x�M y, then x�M z �M y for some z ∈ L.

Remark 3.5. (1) The condition (APP) is equivalent to
(APP)′ x ∈ ( ↓↓Mx)ul for each x ∈ X.
(2) In a ∨-semilattice with 0, the condition (M2) always holds.
(3) If M = I1(L) or M = I2(L), then (M1) can be implied by (M2).

If M = I3(L), then (M1) can be implied by (M2) and (APP).
(4) ForM = Im(L) (m = 1, 2, 3), (M1) and (INT) can be implied by

(M2) and (APP) by Lemma 1.8(2) in [8].

Definition 3.6. A poset L is called M-continuous if it satisfies the
conditions (M1), (M2) and (APP). An ‘M-continuous’ is called strongly
M-continuous if it satisfies the condition (INT) additionally.

At the end of this subsection, we will compare ourM-way below with
the Z-(M-)notions in [2, 3, 4, 5, 7, 9, 19, 24, 26, 27, 31, 33] and many
other literatures.

Remark 3.7. (1) x is said to be Z-way below (or Z-below, M-way
below) y if x ∈ Mul (which is equivalent to x ≤

∨
M if

∨
M exists)

implies x ∈↓M for any M ∈M. These generalized way below relations
are generalizations of both the classical way below relation and the wedge
below relation.

(2) The Z-way below (or Z-below, M-way below) generally does
not has the property (5) in Proposition 3.3. For example, let L be
the diamond lattice {0, a, b, 1} and Z = P(L). It is easy to show that
a, b�Z 1 and 1 = a∨ b 6�Z 1, here �Z is the Z-way below relation in
(1).

(3) In the theory of Z-(M-)continuous poset, the corresponding con-
dition of (M1) and (M2) is that

(Z1) ↓↓Zx =↓M for some M ∈M.
(4) The (strongly) Z-(M-)continuity is also a generalization of both

of the usual continuity and completely distributivity. Sometimes, the
poset is assumed to be Z-(M-)complete and equipped with a more
strongly subset system. The Z-(M-)continuity is characterized by Z-
(M-)distributivity and certain Galois connections.
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3.2. M-minimal set

In a complete lattice (resp., a dcpo) L, B ⊆ L is called a minimal
set (resp., directed minimal set) of x if

∨
B = x, and for any A ∈ P(L)

(resp., ∀A ∈ D(L)), x ≤
∨
A implies for any b ∈ B, b ≤ a for some

a ∈ A. A dcpo (resp., complete lattice) is continuous (resp., completely
distributive) iff each element has a directed minimal set (resp., minimal
set) [28, 29]. An equivalent statement of a directed minimal set is that,
B ⊆ L is a directed minimal set of x if and only if

∨
B = x and for any

D ∈ D(L), x ≤
∨
D implies B ⊆ ID. For this reason, we introduce the

following concept.

Definition 3.8. ∀x ∈ L, B ⊆ L is called an M-minimal set of x if

(1) x =
∨
B;

(2) ∀M ∈M, x ∈Mul implies B ⊆ IM .

Remark 3.9. (1) In a dcpo L, if M = D(L), then an M-minimal
set is a directed minimal set.

(2) In a complete lattice L for M = P(L), then for any co-prime
element x of L, a P(L)-minimal set of x is a minimal set of x in the
sense of Wang [29].

(3) If x ∈ L has an M-minimal set, then the usual union of some
M-minimal sets of x is also an M-minimal set of x. That is to say,
if there exists an M-minimal set of x, then there is a largest one, in
symbols βM(x).

Proposition 3.10. The following two are equivalent.

(1) L satisfies the condition (M2), i.e., �M is approximating;

(2) for any x ∈ L, there exists an M-minimal set of x, thus βM(x)
exists.

Proof. (1)=⇒ (2). We only need to show that ∀x ∈ L, ↓↓Mx is an

M-minimal set of x. In fact, ∀M ∈ M with x ∈ Mul. Then for any
y ∈ ↓↓Mx, we have y ∈ IM . Hence ↓↓Mx ⊆ IM .

(2)=⇒ (1). We only need to show that βM(x) = ↓↓Mx. On the one

hand, ∀a ∈ ↓↓Mx, it is easy to verify that βM(x) ∪ {a} also is an M-

minimal set of x, which implies a ∈ βM(x) and βM(x) ⊇ ↓↓Mx by the

maximality of βM(x). On the other hand, ∀M ∈ M with x ∈ Mul, we
have βM(x) ⊆ IM and then βM(x) ⊆

⋂
{IM |M ∈M, x ∈ IM} = ↓↓Mx.

�
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3.3. Representation of approximating auxiliary relations by
M-way below relations

In [20], it is shown that an auxiliary relation on a poset L is approxi-
mating iff there exists a subset system of L such that L isM-continuous
(in sense of [20]) and the M-way below relation (also in sense of [20])
coincides with the given auxiliary relation. In other words, each approx-
imating auxiliary relation on a poset can be represented by an M-way
below relation on anM-continuous poset in sense of [20]. In this section,
we also will show that each approximating auxiliary relation on a poset
can be represented by an M-way below relation on an M-continuous
poset in our sense.

Definition 3.11. [12] A binary relation ≺ on a poset L is called
an auxiliary relation, or an auxiliary order, if it satisfies the following
conditions for all u, x, y, v ∈ L:

(Au1) x ≺ y implies x ≤ y;
(Au2) u ≤ x ≺ y ≤ v implies u ≺ v.
(Au3) if 0 exists, then 0 ≺ x for any x ∈ L.

Put ↓≺ x = {y ∈ L| y ≺ x} for each x ∈ L.

Definition 3.12. (See in [12] for L a dcpo) We call an auxiliary
relation ≺ on L approximating if

(App) ∀x ∈ L, ↓≺ x is directed (thus is an ideal) and x ∈ (↓≺ x)ul.

The set of all auxiliary relations and all approximating auxiliary re-
lations on L are denoted by Aux(L) and App(L) respectively.

Clearly, each M-way below relation is an auxiliary relation. Fur-
thermore, if (M2) and (APP) hold, then �M is also an approximating
auxiliary relation.

Proposition 3.13. ([12]) Let M be the set of monotone mappings
s : L −→ θ(L) satisfying s(x) ⊆↓ x for all x ∈ L— considered as a poset
with respect to the pointwise order. Then the assignment

≺7−→ s≺ = (x 7−→ {y| y ≺ x})
is a well defined isomorphism from Aux(L) to M , whose inverse asso-
ciates to each mapping s ∈M , the relation ≺s given by

x ≺s y iff x ∈ s(y).

Proposition 3.14. For any approximating auxiliary relation ≺ on
L, there is a subset system M of L such that ≺=�M and L is M-
continuous.
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Proof. Let M = {M ⊆ L| M ⊆↓≺ a ⊆ IM for some a ∈ L}. For
x, y ∈ L, suppose that x�M y. Put M =↓≺ y. Then IM = M since M
is an ideal and then M ∈ M. It follows that y ∈ (↓≺ y)ul = Mul. Then
x ∈ IM = M =↓≺ y. Thus x ≺ y. Conversely, suppose that x ≺ y. For
M ∈M with y ∈Mul, we can find an a ∈ L such that M ⊆↓≺ a ⊆ IM .
Then y ∈ Mul ⊆ (↓≺ a)ul, which implies that y ≤ a and x ∈↓≺ a ⊆ IM
since x ≺ y. Hence x �M y. Hence ≺=�M and L is M-continuous.
�

Theorem 3.15. An auxiliary relation on a poset L is approximating
if and only if it is theM-way below relation for some subset systemM
such that L is M-continuous.

4. The M-Scott topologies on posets

Definition 4.1. We call a subset U of L an M-Scott open set if U
is an upper set and for any M ∈M, Mul ∩U 6= ∅ implies I ∩U 6= ∅ for
each I ∈ IM . We call a subset of LM-Scott closed if its complement is
M-Scott open. An M-Scott open set F is called an open filter if it is
a filter, that is for any a, b ∈ F , there exists c ∈ F as a lower bound of
a, b. Denote by OFil(L) the family of open filters of L.

Denote σM(L) the family of allM-Scott open subsets of L. It is easy
to verify that σM(L) is a topology on L, called the M-Scott topology
on L. ΣM(L) will denotes the corresponding topological space.

Remark 4.2. (1) By Corollary 2.2 in [8], σ1(L) ⊆ σI1(L) and for
m = 2, 3, σIm(L) = σm(L).

(2) Let M1, M2 be two subset systems of L. If M1 ⊆ M2, then
σM1(L) ⊇ σM2(L). The finest M-Scott topology is the Alexandrov
topology (one corresponding subset system is {{x}| x ∈ X}) and the
coarsest one is σ2(L) in [8] (one corresponding subset system is I2(L)).

(3) Let {Mj | j ∈ J} be a family of subset systems of a poset L. If
for each j ∈ J , σMj (L) is a same topology on L, then σ⋃

jMj
(L) is also

equal to this topology.

Proposition 4.3. The following statements hold.
(1) σ2(L) ⊆ σM(L) ⊆ γ(L);
(2) {x}− =↓ x;
(3) σM(L) is a T0 topology;
(4) if y ∈ (↑ x)◦, then x�M y;



288 Wei Yao

(5) OFil(L)— the set of all open filter—just is the set of all nonzero
co-prime elements of σM(L).
If L is M-continuous, then

(6) U is M-Scott open if and only if U is an upper set and for any
u ∈ U , there exists v ∈ U such that v �M u;

(7) OFil(L) is a basis of σM(L).
If L satisfies (INT), then

(8) ∀x ∈ L, ↑↑Mx is M-Scott open;

(9) y ∈ (↑ x)◦ if and only if x�M y, thus ∀x ∈ L, (↑ x)◦ = ↑↑Mx.
If L is strongly M-continuous, then

(10) { ↑↑Mx| x ∈ L} is a basis of σM(L);

Proof. (1) ∀U ∈ σ2(L), U is an upper set. Suppose that M ∈ M
and Mul ∩U 6= ∅. If M ⊆ I and I is an ideal, then Iul ∩U 6= ∅ and then
I ∩ U 6= ∅. Thus U ∈ σM(L).

(2) Clearly, {x}− ⊇↓ x since every M-Scott closed set is a lower set.
By (1), {x}− ⊆ {x}−σ2(L) =↓ x, where {x}−σ2(L) denotes the closure of

{x} in σ(L). Hence {x}− =↓ x.
(3) Trivial since σ2(L) is a T0 topology.
(4) Suppose that y ∈ (↑ x)◦. Then ∀M ∈ M with y ∈ Mul, we have

Mul ∩ (↑ x)◦ 6= ∅, it follows that I ∩ (↑ x)◦ 6= ∅ for any ideal I ⊇ M .
Then I∩ ↑ x 6= ∅ and x ∈ I. Then x ∈ IM and hence x�M y.

(5) The proof is the same as that of Proposition II-1.11(i) in [12].
Firstly suppose that U ∈ σM(L) is a filter and that U is not a co-prime
in σM(L). Then there are V, W ∈ σM(L) such that U ⊆ V ∪ W
and elements v ∈ U\V and w ∈ U\W . Let z ∈ U satisfy z ≤ v
and z ≤ w. Since V and W are upper sets we have z 6∈ V ∪ W , a
contradiction to z ∈ U . Secondly, suppose that U is a co-prime in
σM(L). To show that U is a filter, note first that it is an upper set.
Suppose v, w ∈ U . Then U 6⊆ L\ ↓ v and U 6⊆ L\ ↓ w. By (1), the
sets L\ ↓ v and L\ ↓ w are Scott open. Thus, since U is co-prime,
U 6⊆ (L\ ↓ v) ∪ (L\ ↓ w) = L\(↓ v∩ ↓ w). Thus there is a u ∈ U such
that u ≤ v and u ≤ w.
If L is M-continuous,

(6) Suppose that U ∈ σM(L) and u ∈ U . Then u ∈ ( ↓↓Mu)ul ∩ U ,
↓↓Mu is an ideal and M ⊆ ↓↓Mu ⊆ IM for some M ∈ M. Then

( ↓↓Mu)ul = Mul and Mul ∩ U 6= ∅. Since ↓↓Mu is an ideal containing

M , we have ↓↓Mu ∩ U 6= ∅, i.e., there exists v ∈ U such that v �M u.

Conversely, suppose that M ∈ M such that Mul ∩ U 6= ∅, then there
exists u ∈Mul ∩ U and there exists a further v ∈ U such that v �M u.
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Then v ∈ IM . For all ideal I with M ⊆ I, v ∈ IM ⊆ I. Thus v ∈ I∩U 6=
∅. Hence U is M-Scott open.

(7) For any x ∈ U ∈ σM(L), by (6), we can find a sequence of
{xn}n∈N ⊆ U such that · · · �M xn �M · · · �M x1 �M x. Put
F =

⋃∞
n=1 ↑ xn, then F is a filter and x ∈ F ⊆ U . We only need to

prove that F is M-Scott open in the following. In fact, if M ∈ M and
Mul ∩ F 6= ∅, then there exists n ∈ N such that Mul∩ ↑ xn 6= ∅, i.e.,
there exists a ≥ xn such that a ∈Mul. Thus xn+1 ∈ IM . For each ideal
I ⊇M , we have xn+1 ∈ I ∩ F 6= ∅. Hence F ∈ σM(L).
If �M has the property of interpolation, i.e., (APP ) holds,

(8) Obviously, ↑↑Mx is an upper set. ∀M ∈M with Mul∩ ↑↑Mx 6= ∅,
there exists a ∈ Mul such that x �M a and there further exists y ∈ L
such that x�M y �M a. Suppose that I is an ideal with M ⊆ I. Then
by y �M a, we have y ∈ IM ⊆ I, which implies that y ∈ ↑↑Mx ∩ I and
↑↑Mx ∩ I 6= ∅.

(9) If x �M y, then y ∈ ↑↑Mx ∈ σM(L) and y ∈ (↑ x)◦. Then
↑↑Mx ⊆ (↑ x)◦ and by (4), ↑↑Mx ⊇ (↑ x)◦.

If L is strongly M-continuous,
(10) we only need to prove that U ⊆

⋃
x∈U ↑↑Mx. In fact, ∀u ∈ U ,

there exists x ∈ U such that x�M u and u ∈ ↑↑Mx. �

Lemma 4.4. ([29]) A complete lattice is completely distributive iff
each element has a minimal set.

Theorem 4.5. If L is a strongly M-continuous poset, then σM(L)
is completely distributive.

Proof. For any U ∈ σM(L), we only need to show that { ↑↑Mx| x ∈
U} is a minimal set of U . Clearly,

⋃
x∈U ↑↑Mx = U by Theorem 4.3(10).

Let {Vi| i ∈ I} ⊆ σM(L) with U ⊆
⋃
i Vi. ∀x ∈ U , x ∈ Vi for some i ∈ I

and then ↑↑Mx ⊆ Vi. This completes the proof. �

Lemma 4.6. If OFil(L) is a basis of σM(L) and σM(L) is a contin-
uous lattice, then for any x ∈ U ∈ σM(L), there exists y ∈ U such that
y �M x.

Proof. ∀x ∈ U ∈ σM(L), there exist V ∈ σM(L) and F ∈ OFil(L)
such that x ∈ F ⊆ V � U . We only need to prove that there exists
y ∈ U such that F ⊆↑ y by Proposition 4.3(4). In fact, if F 6⊆↑ y for any
y ∈ U , then there exists zy ∈ F such that zy 6≥ y and y ∈ L\ ↓ zy, which
implies that there exists Fy ∈ OFil(L) such that y ∈ Fy ⊆ L\ ↓ zy.
Thus {Fy| y ∈ U} is a cover of U in σM(L). It follows that F ⊆ V ⊆
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Fy1 ∪ · · · ∪ Fyn for y1, · · · , yn ∈ U . Since zy1 , · · · , zyn ∈ F and F
is a filter, there exists z ∈ F such that z ≤ zy1 , · · · , zyn . For z ∈ F ,
there exists i ∈ {1, 2, · · · , n} such that z ∈ Fyi . Since z ≤ zyi , we have
zyi ∈ Fyi ⊆ L\ ↓ zyi , which is a contradiction. �

Theorem 4.7. Consider the following conditions:
(1) { ↑↑Mx| x ∈ L} is a basis of σM(L);
(2) OFil(L) is a basis of σM(L) and σM(L) is a continuous lattice;
(3) σM(L) has enough co-prime elements and is continuous;
(4) σM(L) is a completely distributive lattice;
(5) L satisfies (M2),

we have (1) =⇒ (2)⇐⇒ (3)⇐⇒ (4) =⇒ (5). If (M1) and (APP ) hold,
then the five conditions are equivalent to each other.

Proof. (2)⇐⇒ (3) by Proposition 4.3(5) and (3)⇐⇒ (4) see [11, 12].
(1) =⇒ (2): We only need to prove that σM(L) is a continuous lattice.

It is sufficient to show that ↑↑Mx � U for all x ∈ U ∈ σM(L). In fact,
for all directed cover of U , there exists a member of this cover which
contains x and ↑↑Mx.

(2) =⇒ (5): Suppose that x 6∈ ( ↓↓Mx)ul. Then there exists y ∈
( ↓↓Mx)u such that x 6≤ y. Then L\ ↓ y is an open neighborhood of x.
By Lemma 4.5, there exists a ∈ L\ ↓ y such that a �M x and then
a ≤ y, a contradiction.

If L satisfies (M1) and (INT), then by Proposition 4.3(10), (5) =⇒ (1)
holds. �

5. M-Scott convergence

In this section, we shall study the net-theoretical and filter-theoretical
Scott convergence with respect to a subset system M.

Let X be a nonempty set. A net ξ of X is a mapping ξ : ∆ −→ X,
where ∆ is a directed set, denoted by ξ = (xδ)δ∈∆ or just by (xδ)δ∈∆.
A (set-theoretical) filter F on X is a proper lattice filter of 2X .

For a net ξ = (xδ)δ∈∆ of X, ξ is said to be in A ⊆ L eventually if
there exists δ0 ∈ ∆ such that xδ ∈ A for any δ ≥ δ0. The family

Fξ = {F ⊆ X| ξ is in F eventually}

is a filter on X, called the induced filter or the associated filter of ξ. For a
filter F on X, let ∆F = {(x, F )| x ∈ F ∈ F} ordered by (x, U) ≤ (y, V )
iff V ⊆ U . Then ∆F (∀(x, U), (y, V ) ∈ ∆F , ) is a directed set. Define
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ξF : ∆F −→ X by (x, U) 7−→ x. Then ξF is a net, called the induced
net or the associated net of F .

Let X be a nonempty set and F(X) the collection of all filters on X,
a subset F of F(X)×X is called a filter-theoretical convergence relation
[16] if

(1) ([x], x) ∈ F for all x ∈ X, where [x] is the principle ultrafilter
generated by the singleton {x};

(2) If (F , x) ∈ F and F ⊆ G, then (G, x) ∈ F .
The family

OF (X) = {U ⊆ X| (F , x) ∈ F and x ∈ U imply U ∈ F}

is the finest topology on X satisfying (F , x) ∈ F implies F is topologi-
cally convergent to x.

Analogously, let Ξ(X) the collection of all nets on X, a subset N of
Ξ(X)×X is called a net-theoretical convergence relation if

(1) (x, x) ∈ N for all x ∈ X, where x is the constant net valued at x;
(2) If (ξ, x) ∈ N and η is a subnet of ξ, then (η, x) ∈ N .

The family

ON (X) = {U ⊆ X| (ξ, x) ∈ N and x ∈ U implies ξ ∈ U eventually}

is the finest topology on X satisfying (ξ, x) ∈ N implies ξ is topologically
convergent to x. A subset C is closed in ON (X) iff for any net ξ in C,
(ξ, x) ∈ N implies x ∈ C.

Let F (resp., N) be a filter-theoretical (resp., net-theoretical) con-
vergence relation on X. We call N finer than F , if (F , x) ∈ F implies
(ξF , x) ∈ N for all F ∈ F(X) and, F finer than N , if (ξ, x) ∈ N implies
(ξF , x) ∈ F for all ξ ∈ Ξ(X). F and N are called compatible if both F
and N are finer than each other.

Lemma 5.1. Let F (resp., N) be a filter-theoretical (resp., net-
theoretical) convergence relation on X.

(1) If F is finer than N , then OF (X) ⊆ ON (X);
(2) If N is finer than F , then ON (X) ⊆ OF (X);
(3) If F and N are compatible, then OF (X) = ON (X).

Proof. (1) Suppose that U ∈ OF (X) and (ξ, x) ∈ N, x ∈ U . Then
(Fξ, x) ∈ F , which implies that U ∈ Fξ. Thus ξ ∈ U eventually and
U ∈ ON (X).

(2) Suppose that U ∈ ON (X) and (F , x) ∈ F, x ∈ U . Then (ξF , x) ∈
N , which implies that ξF ∈ U . Thus there exists (a, F ) ∈ ∆F such that
∀(b, F1), (b, F1) ≥ (a, F ) implies ξF (b, F1) = b ∈ U . Let F1 = F, ∀c ∈ F ,
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we have (c, F ) ≥ (a, F ) and then F ⊆ U and U ∈ F . Hence U ∈ OF (X).
�

In [35], the concept of lim-infM-convergence of nets on posets is de-
fined, which is a generalization of lim-inf-convergence or Scott conver-
gence (or, S-convergence for short) in dcpos by changing collection of
directed subsets to a subset system M. Here we would like to called it
M-Scott convergence. Also in [8, 30], the Scott convergence of filters
on any posets are defined with respect to some certain subset systems.
Likewise, we can generalize it to M-setting.

Definition 5.2. (1) A net (xδ)δ∈∆ in L is said to be M-Scott con-
vergent to x ∈ L, in symbols xδ −→M x, if there exists M ∈ M such
that x ∈Mul and ∀m ∈M , xδ ≥ m eventually.

(2) A filter F on L is said to be M-Scott convergent to x ∈ L, in
symbols F −→M x, if there exists M ∈ M such that M ⊆ F l and
x ∈Mul.

Easily, we can see that both of the net-theoretical and filter-theoretical
M-Scott convergence are convergence relations sinceM is a subset sys-
tem (for each x ∈ X, x =

∨
M for some M ∈ M) and the induced

topologies are

ONM(L) = {U ⊆ L| xδ −→M x ∈ U implies xδ ∈ U evetually}

and

OFM(L) = {U ⊆ L| F −→M x ∈ U implies U ∈ F}
respectively.

Remark 5.3. (1) C is closed in ONM(L) iff for each net ξ ⊆ C,
ξ →M x implies x ∈ C.

(2) F −→M x ≥ y implies F −→ y and ξ −→M x ≥ y implies
ξ −→ y. Thus if x ≤ y, then the constant net y is M-Scott convergent
to x.

Proposition 5.4. (1) ξ −→M x iff Fξ −→M x.
(2) F −→M x iff ξF −→M x.

Proof. (1) Suppose that ξ ∈ Ξ(L) and ξ −→M x. Then there exists
M ∈ M such that x ∈Mul and ∀m ∈M, ξ ≥ m eventually. That is to
say, ∀m ∈ M , there exists δ0 ∈ ∆ such that m ∈ {ξ(δ)| δ ≥ δ0}l ⊆ F lξ.
Hence M ⊆ F lξ and Fξ −→M x. Conversely, suppose that Fξ −→M x.

Then there exists M ∈ M such that x ∈ Mul and M ⊆ F lξ. ∀m ∈ M ,
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there exists F ∈ F lξ such that m ∈ F l and for this F , there exists δ0 ∈ ∆

such that F ⊇ {ξ(δ)| δ ≥ δ0}, which implies ξ ≥ m eventually. Hence
ξ −→M x.

(2) Suppose that M is a subset system of L and F −→M x. Then
there exists M ∈ M such that M ⊆ F l and x ∈ Mul. For any m ∈
M , there exists F ∈ F l such that m ∈ F l and F ⊆↑ m. Choose
a ∈ F , we have (a, F ) ∈ ∆F . ∀(b, F1) ≥ (a, F ), i.e., b ∈ F1 ⊆ F ,
ξF (b, F1) = b ∈ F1 ⊆ F . Thus ξF ∈ F ⊆↑ m eventually and ξF −→M x.
ξF −→M x⇒ F −→M x can be induced by (1) since FξF = F . �

By Lemma 5.1 and Theorem 5.4, the net-theoretical and filter-theoretical
M-Scott convergence are compatible and thus they induce a same topol-
ogy, i.e., OFM(L) = ONM(L), denoted by OM(L).

For a dcpo, the Scott topology is equal to the topology induced by
the Scott-convergence. Similarly, we have the following:

Theorem 5.5. σM(L) = OM(L).

Proof. Suppose that U is an M-Scott open set of L and (xδ)δ∈∆ is
a net in L which is M-Scott convergent to x ∈ U . For the net (xδ)δ∈∆,
there existsM ∈M such that x ∈Mul and ∀m ∈M, xδ ≥ m eventually.
Since x ∈ Mul ∩ U 6= ∅, we have I ∩ U 6= ∅ for each ideal I ⊇ M . If xδ
is not in U eventually, then for any δ ∈ ∆, we can find a δ1 ≥ δ such
that xδ1 6∈ U . These xδ1 forms a subnet of xδ and xδ1 ⊆ U ′. Therefore,
xδ1 →M x by Remark 5.3, we have x ∈ U ′, which is a contradiction.

Conversely, suppose that U ∈ OM(L). ∀x ∈ U, y ∈ L with x ≤ y,
the constant net y isM-Scott convergent to x. Then y ∈ U and U is an
upper set. ∀M ∈ M with Mul ∩ U 6= ∅ and I is an ideal with M ⊆ I.
Choose x ∈ Mul ∩ U . The ideal I as a net of L is M-Scott convergent
to x, which implies that I ∩ U 6= ∅. Hence U ∈ σM(L). �

Proposition 5.6. (1) y �M x if and only if xδ −→M x implies
xδ ≥ y eventually for any net (xδ)δ∈∆;

(2) In anyM-continuous lattice L, xδ −→M x if and only if y �M x
implies xδ ≥ y eventually for any y ∈ L.

Proof. Trivial. �
Again for a dcpo, it is continuous or a domain if and only if the Scott-

convergence coincides with the Scott topological convergence. Similarly,
we have,

Lemma 5.7. (1) Let x, y ∈ L. If U is an open neighborhood of x
such that y ∈ U l, then y �M x. Thus U(x)l ⊆ ↓↓Mx.

(2) If (APP) holds, then U(x)l = ↓↓Mx.
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Proof. (1) For any M ∈ M such that x ∈ Mul. Let I be an ideal
with I ⊇ M . Then I ∩ U 6= ∅ and y ∈ I since y ∈ U l and I is a lower
set. Hence y ∈ IM and y �M x.

(2) ∀m ∈ ↓↓Mx, we have m �M x and ↑↑Mm is an open neighbor-

hood of x. Then m ∈↓ m = (↑ m)l ⊆ U(x)l. Hence ↓↓Mx ⊆ U(x)l.
�

Theorem 5.8. For a subset system M of a poset L, if L satisfies
the condition (INT ), i.e., the M-way below relation �M satisfies the
properties of interpolation, then (M1) and (APP) hold if and only ifM-
Scott convergence coincides with topological convergence w.r.t. σM(L).

Proof. Suppose that L is stronglyM-continuous and the net (xδ)δ∈∆

is topologically convergent to x with respect to σM(L). We only need
to show that xδ −→M x. In fact, since L is M-continuous, we have
x ∈ ( ↓↓Mx)ul and M ⊆ ↓↓Mx ⊆ IM for some M ∈ M. Then Mul =

( ↓↓Mx)ul 3 x. ∀m ∈M ⊆ ↓↓Mx, we have m�M x and ↑↑Mm is anM-

Scott open neighborhood of x and xδ ∈ ↑↑Mm ⊆↑ m eventually. Hence
xδ −→M x.

Conversely, suppose that for any net,M-Scott convergence coincides
with Scott topological convergence. Let U(x) be the M-Scott open
neighborhood of x and ξ = ξU(x). It is easy to verify that ξ is topological
convergent to x, which implies that ξ isM-Scott convergent to x. Then
there exists M ∈M such that x ∈Mul and ∀m ∈M, ξ ≥ m eventually.
We need to show that M ⊆ ↓↓Mx ⊆ IM and x ∈ ( ↓↓Mx)ul. In fact,

∀m ∈ M , there exists U ∈ U(x) such that m ∈ U l. By Lemma 5.7,
m �M x. Thus M ⊆ ↓↓Mx. ∀m ∈ ↓↓Mx, since x ∈ Mul, we have

m ∈ IM and then ↓↓Mx ⊆ IM . x ∈Mul = ( ↓↓Mx)ul. �

Corollary 5.9. L is an M-continuous poset iff U(x)→M x for any
x ∈ L.

The conclusions in Theorem 5.5, Proposition 5.6 and Theorem 5.8 in-
dicate that the concepts ofM-way below relation andM-Scott topology
are defined reasonably.

6. Characterize M-continuity by Galois connections

The Z-(M-)continuity is characterized by certain Galois connections
in many literatures. In this section, we will characterize ourM-continuity
by Galois connections.
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Let θ(L) denote the family of all lower set of L. Then θ(L) is a com-
pletely distributive lattice under set inclusion [6]. Define ∆M : θ(L) −→
θ(L) by ∀A ∈ θ(L),

∆M(A) = {a ∈ L| there is a filter F with F →M a, F l is an ideal and A ∈ F}.

and ∇M : θ(L) −→ θ(L) by ∀B ∈ θ(L),

∇M(B) = ↓↓MB =
⋃
{ ↓↓Mb| b ∈ B}.

Then both ∆M and ∇M are order-preserving. The definition of ∆M is
somewhat different from that in [8].

Proposition 6.1. (1) ∇M(A) ⊆ A ⊆ ∆M(A) for all A ∈ θ(L).
(2) If (APP) holds, then ∇M is an interior operator on θ(L).

Proof. (1) For any x ∈ ∇M(A), we have x �M a for some a ∈ A.
Since A is a lower set, we have x ≤ a and x ∈ A. Thus ∇M(A) ⊆ A.
∀x ∈ A, we have x =

∨
M for some M ∈ M. Then x ∈ Mul. Put

F = [x], we have F l =↓ x is an ideal and M ⊆↓ x = F l. Then
x ∈ ∆M(A). Thus A ⊆ ∆M(A).

(2) We only need to show that ∇M(A) ⊆ ∇M(∇M(A)). ∀x ∈
∇M(A), we have x�M a for an a ∈ A. By (INT), x�M a1 �M a for
some a1 ∈ L. Clearly, a1 ∈ ∇M(A) and then x ∈ ∇M(∇M(A)). �

Lemma 6.2. If (M2) holds, then
(1) {↑ y∩∇(A)| y �M x} is a filter base of a filter, denoted by FA,x.

(2) F lA,x = ↓↓Mx.

Proof. (1) {↑ y ∩ ∇(A)| y �M x} is a filter base. Firstly, for all
y �M x, y ∈↑ y ∩ ↓↓Mx. Thus each ↑ y ∩∇(A) is nonempty. Secondly,
for all y1, y2 �M x, there is a y3 �M x such that y1, y2 ≤ y3. Then
(↑ y1 ∩∇(A)) ∩ (↑ y2 ∩∇(A)) = (↑ y1∩ ↑ y2) ∩∇(A) ⊇ (↑ y3 ∩∇(A)).

(2) It is easy to check that (↑ y ∩∇(A))l =↓ y. Then F lA,x =
⋃

y�Mx
(↑

y ∩∇(A))l =
⋃

y�Mx
↓ y = ↓↓Mx. �

Proposition 6.3. (1) If L is M-continuous, then (∆M,∇M) forms
a Galois connection on θ(L).

(2) If (∆M,∇M) is a Galois connection on θ(L), then (M2) and
(APP) hold.

Proof. (1) On one hand, ∀x ∈ ∇M(∆M(A)), there exists y ∈
∆M(A) such that x �M y. For y ∈ ∆M(A), there exists a filter
F →M y, F l is an ideal and A ∈ F . For F →M y, there exists
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M ∈ M such that M ⊆ F l and y ∈ Mul. Since x �M y, we have
x ∈ IM ⊆ F l, which implies x ∈ F l for some F ∈ F . Then F ∩ A ∈ F
and x ∈ (F ∩ A)l. Choose a ∈ F ∩ A ⊆ A, we have x ≤ a. Hence
x ∈ A since A is a lower set. On the other hand, ∀x ∈ A, there exists
M ∈ M such that M ⊆ ↓↓Mx ⊆ IM . Since Mul = ( ↓↓Mx)ul 3 x, we

have FA,x →M x. Clearly, F lA,x = ↓↓Mx is an ideal, M ⊆ F lA,x and

∇(A) ∈ F . Hence x ∈ ∆M(∇M(A)).

(2) For any x ∈ X, x ∈↓ x ⊆ ∆M(∇M(↓ x)) = ∆M( ↓↓Mx). Then

there exists a filter F →M x such that F l is an ideal and ↓↓Mx ∈ F .

There exists M ∈M such that M ⊆ F l and x ∈Mul. Suppose that Z is
a finite subset of ↓↓Mx. Since x ∈Mul, we have Z ⊆ IM ⊆ F l and since

Z is finite, there exists F ∈ F such that Z ⊆ F l and then F ⊆ Zu, which
implies Zu ∈ F and Zu ∩ ↓↓Mx ∈ F . Thus Zu ∩ ↓↓Mx 6= ∅ and ↓↓Mx
is directed (hence an ideal), i.e., (M2) holds. Also, ↓ x ⊆ ∆M( ↓↓Mx) ⊆
( ↓↓Mx)ul ⊆ (↓ x)ul =↓ x. Hence x ∈ ( ↓↓Mx)ul. That is, (APP) holds.
�

By Proposition 6.3, we have

Theorem 6.4. If (M1) holds, then L isM-continuous iff (∆M,∇M)
is a Galois connection on θ(L).

Lemma 6.5. ([25, 34]) Let f, g be two maps on a poset. If (f, g)
is a Galois connection, then f is an interior operator iff g is a closure
operator.

Corollary 6.6. If L isM-continuous, then ∆M is a closure operator
on θ(L).

7. JM-distributivity

The Z-(M-)continuity is characterized by Z-(M-)distributivity in
many literatures.

In this section, we suppose that L is a complete lattice. Thus IM
just is the ideal generated by M and the condition (M2) automatically
holds.

Definition 7.1. Let S be a collection of subsets of L. L is called an
S-distributive lattice or be S-distributive if it satisfies the S-distributive
law, that is for any {Si| i ∈ I} ⊆ S and any Si = {ai,j | j ∈ Ji}, the
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following equation holds:∧
i∈I

∨
j∈Ji

ai,j =
∨

f∈
∏

i Ji

∧
i∈I

ai,f(i).

For a subset system M, let JM = {IM | M ∈M}. Then JM ⊆ IM.

Proposition 7.2. (1) M-distributivity implies JM-distributivity.
(2) M-distributivity implies IM-distributivity.
(3) If L is distributive, then JM-distributivity always implies M-

distributivity.

Proof. (1) Trivial since
∨
M =

∨
IM .

(2) Trivial by (1) and the definition of IM.
(3) Let {Mi| i ∈ I} ⊆ M. Suppose that Mi = {ai,j | j ∈ Ji} and

IMi = {bi,k| k ∈ Ki} (∀i ∈ I). We only need to show that∨
f∈

∏
i Ji

∧
i∈I

ai,f(i) ≥
∨

g∈
∏

iKi

∧
i∈I

bi,g(i).

In fact, ∀g ∈
∏
iKi, ∀i ∈ I, bi,g(i) ≤

ni∨
l=1

mi,l for some {mi,l| l =

1, 2, · · · , l} ⊆Mi. Put Bi,g(i) = {mi,l| l = 1, 2, · · · , ni}, we have Bi,g(i) is
a finite subset ofMi for all i ∈ I. Then

∧
i∈I

bi,g(i) =
∨

h∈
∏

iBi,g(i)

∧
i∈I

mi,h(i) ≤∨
f∈

∏
i Ji

∧
i∈I

ai,f(i). This completes the proof. �

Proposition 7.3. (M2) holds if and only if L is JM-distributive.

Proof. Suppose that L satisfies the condition (M2). ∀{IMi | i ∈ I} ⊆
JM and IMi = {ai,j | j ∈ Ji}(∀i ∈ I). We only need to prove that∧

i∈I

∨
IMi ≤

∨
f∈

∏
i Ji

∧
i∈I

ai,f(i).

In fact, ∀x �M
∧
i∈I

∨
IMi =

∧
i∈I

∨
Mi, we have x �M

∨
Mi(∀i ∈ I).

Then ∀i ∈ I, x ∈ IMi and x = ai,g(i), which implies that x =
∧
i∈I

ai,g(i) ≤∨
f∈

∏
i Ji

∧
i∈I

ai,f(i).

Conversely, suppose that L is JM-distributive. We only need to
prove that for any x ∈ L, there exists an M-minimal set of x. Let
B = {IM | x ≤

∨
M} = {Bi| i ∈ I} and ∀i ∈ I, Bi = {ai,j | j ∈ Ji}. Put
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B = {
∧
i∈I

ai,f(i)| f ∈
∏
i Ji}. We will show that B is an M-minimal set

of x in the following. In fact,∨
B =

∨
f∈

∏
i Ji

∧
i∈I

ai,f(i) =
∧
i∈I

∨
j∈Ji

ai,j =
∧

x≤
∨
M

∨
IM =

∧
x≤

∨
M

∨
M = x,

since for each x, there exists M ∈ M such that x =
∨
M . For any

M ∈M with x ≤
∨
M , we have IM ∈ B and IM = Bi0 for some i0 ∈ I.

∀a =
∧
i∈I

ai,f(i) ∈ B, we have a ≤ ai0,f(i0) ∈ Bi0 = IM and B ⊆ IM . �

Remark 7.4. (1) In Proposition 7.3, if M = D(L), then L is con-
tinuous iff L is J (L)-distributive, where J (L) is the set of all ideals of
L. Since for a complete lattice (even for a dcpo) L, J (L)-distributivity is
equivalent toD(L)-distributivity=(directed distributivity). Thus Propo-
sition 7.3 can be view as a generalization of distributivity-like charac-
terization of continuous lattices.

(2) In Proposition 7.3, if (M1) holds, then the two conditions are
equivalent to that ↓↓M : L −→ IM is the left adjoint of

∨
: IM −→ L.
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