ON n-FOLD STRONG IDEALS OF $B H$-ALGEBRAS

Sun Shin Ahn and Eun Mi Kim

Abstract

The notion of n-fold strong ideal in $B H$-algebra is introduced and some related properties of it are investigated. The role of initial segments in BH -algebras is described.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras $([2,3])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. $B C K$ algebras have some connections with other areas: D. Mundici [5] proved $M V$-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [6] proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [4] introduced the notion of a $B H$-algebra, which is a generalization of $B C K / B C I$-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [8] estimated the number of $B H^{*}$-subalgebras of order i in a transitive $B H^{*}$-algebras by using Hao's method. S. S. Ahn and J. H. Lee ([1]) introduced the notion of strong ideals in BH -algebra and investigated some properties of it.

In this paper, we introduce the notion of n-fold strong ideal in BH algebra and investigated some related properties of it. We also describe the role of initial segments in $B H$-algebras.

2. Preliminaries

By a BH-algebra ([4]), we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$, for all $x, y \in X$.

For brevity, we also call X a $B H$-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if $x * y=0$. A non-empty subset S of a $B H$-algebra X is called a subalgebra of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1. ([4]) A non-empty subset A of a $B H$-algebra X is called an ideal of X if it satisfies:
(I1) $0 \in A$,
(I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.
An ideal A of a $B H$-algebra X is said to be a translation ideal of X if it satisfies:
(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) *(y * z) \in A$ and $(z * x) *(z * y) \in$ $A, \forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. A mapping $f: X \rightarrow Y$ of $B H$-algebras is called a homomorphism if $f(x * y)=f(x) * f(y)$ for all $x, y \in X$. For a homomorphism $f: X \rightarrow Y$ of $B H$-algebras, the kernel of f, denoted by $\operatorname{Ker}(f)$, defined to be the set

$$
\operatorname{Ker}(f)=\{x \in X \mid f(x)=0\} .
$$

Definition 2.2. ([8]) A $B H$-algebra X is called a $B H^{*}$-algebra if it satisfies the identity $(x * y) * x=0$ for all $x, y \in X$.

Example 2.3. ([4]) Let $X:=\{0,1,2,3\}$ be a $B H$-algebra which is not a $B C K$-algebra with the following Cayley table:

$*$	0	1	2	3
0	0	1	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $A:=\{0,1\}$ is a translation ideal of X.
Lemma 2.4. Let X be a $B H^{*}$-algebra. Then the following identity holds:

$$
0 * x=0, \forall x \in X .
$$

Definition 2.5. A $B H$-algebra ($X ; *, 0$) is said to be transitive if $x * y=0$ and $y * z=0$ imply $x * z=0$.

Definition 2.6. ([1]) A non-empty subset A of a $B H$-algebra X is called a strong ideal of X if it satisfies (I1) and
(I4) $(x * y) * z, y \in A$ imply $x * z \in A$.
Lemma 2.7. ([1]) In a $B H$-algebra, any strong ideal is an ideal.
Lemma 2.8. ([1]) In a $B H^{*}$-algebra X, any ideal is a subalgebra.
Corollary 2.9. ([1]) Any strong ideal of $B H^{*}$-algebra is a subalgebra.

Definition 2.10. Let X be a $B H$-algebra. X is said to be positive implicative if it satisfies the following identity:

$$
(x * y) * z=(x * z) *(y * z), \forall x, y, z \in X
$$

Lemma 2.11. Let X be a positive implicative $B H^{*}$-algebra. If $x \leq y$, then $x * z \leq y * z$ for any $x, y, z \in X$.

Proposition 2.12. If X is a positive implicative $B H^{*}$-algebra, then X is a transitive $B H^{*}$-algebra.

Definition 2.13. ([1]) A non-zero element $a \in X$ is called an atom of a $B H$-algebra X if $x \leq a$ implies $x=0$ or $x=a$. Let n be a positive integer. A non-zero element a of a $B H$-algebra X is called an n-atom of X if $x * a^{n}=0$ implies $x=0$ or $x=a$.

3. n-fold strong ideals

For any elements x and y of a $B H$-algebra $X, x * y^{n}$ denotes $(\cdots((x *$ $y) * y) * \cdots) * y$ in which y occurs n times.

Definition 3.1. A non-empty subset A of a $B H$-algebra X is called an n-fold strong ideal of X if it satisfies (I1) and
(I5) for every $x, y, z \in X$ there exists a natural number n such that $x * z^{n} \in A$ whenever $(x * y) * z^{n}$ and $y \in A$.

For a $B H$-algebra X, obviously $\{0\}$ and X itself are n-fold strong ideals of X for every positively integer n.

Example 3.2. Let $X:=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	2	2	0

Then $(X ; *, 0)$ is a $B H$-algebra. It is easy to check that $A:=\{0,1,2\}$ is an n-fold strong ideal of X for every positive integer n.

The 1 -fold strong ideal is precisely a strong ideal. Taking $z:=0$ in (I5) and using (II), then $x * y=(x * y) * 0^{n} \in A$ and $y \in A$ which imply that $x=x * 0^{n} \in A$. Hence we have the following theorem.

Theorem 3.3. In a $B H$-algebra, every n-fold strong ideal is an ideal.
Combining Lemma 2.8 and Theorem 3.3, we have the following corollary.

Corollary 3.4. In a $B H^{*}$-algebra, every n-fold strong ideal is a subalgebra.

The converse of Corollary 3.4 may not be true as seen in the following example.

Example 3.5. Let $X=\{0,1,2,3\}$ be a $B H$-algebra as in Example 3.2. Then $(X ; *, 0)$ is a $B H^{*}$-algebra. The subset $C=\{0,2\}$ of X is a subalgebra, but not an n-fold strong ideal for every positive integer n, since $(3 * 2) * 0^{n}=2 * 0^{n}=2 \in C$ and $3 * 0^{n}=3 \notin C$.

Now we give a condition for a $B H$-algebra to be an n-fold strong ideal.

Theorem 3.6. Let A be a subalgebra a $B H^{*}$-algebra X. Then A is an n-fold strong ideal of X if and only if $(y * x) * z^{n} \notin A$ whenever $y * z^{n} \notin A$ and $x \in A$.

Proof. Let A be an n-fold strong ideal of X and let $x, y, z \in X$ be such that $y * z^{n} \notin A$ and $x \in A$. If $(y * x) * z^{n} \in A$, then $y * z^{n} \in A$ by (I5). This is a contradiction. Hence $(y * x) * z^{n} \notin A$.

Conversely, let A be a subalgebra X in which $y * z^{n} \notin A$ and $x \in A$ imply $(y * x) * z^{n} \notin A$. Obviously, $0 \in A$. Let $x, y, z \in X$ be such that $(x * y) * z^{n} \in A$ and $y \in A$, If $x * z^{n} \notin A$, then $(x * y) * z^{n} \notin A$ by assumption. This is impossible. Hence A is an n-fold strong ideal of X.

Theorem 3.7. Let $f: X \rightarrow Y$ be a homomorphism of a $B H$-algebra X. If B is an n-fold strong ideal of Y, then $f^{-1}(B)$ is an n-fold strong ideal of X for every positive integer n.

Proof. Since $f(0)=0 \in B$, we have $0 \in f^{-1}(B)$. Let $x, y, z \in X$ be such that $(x * y) * z^{n} \in f^{-1}(B)$ and $y \in f^{-1}(B)$. Then $(f(x) * f(y)) *$ $f(z)^{n}=f\left((x * y) * z^{n}\right) \in B$ and $f(y) \in B$. Since B is an n-fold strong
ideal of Y, it follows from (I5) that $f\left(x * z^{n}\right)=f(x) * f(z)^{n} \in B$ so that $x * z^{n} \in f^{-1}(B)$. Hence $f^{-1}(B)$ is an n-fold strong ideal of X.

Corollary 3.8. Let $f: X \rightarrow Y$ be a homomorphism of $B H$-algebras. Then Kerf $:=\{x \in X \mid f(x)=0\}$ is an n-fold strong ideal of X for every positive integer n.

Theorem 3.9. Let $f: X \rightarrow Y$ be an isomorphism of $B H$-algebras. If a non-zero element a is an n-atom of X, then $f(a)$ is an n-atom of Y where n is a positive integer.

Proof. Let y be a non-zero element of Y such that $y * f(a)^{n}=0$. Then there exists a non-zero element $x \in X$ such that $f(x)=y$. Thus

$$
\begin{aligned}
f(0) & =0=y * f(a)^{n} \\
& =f(x) * f(a)^{n}=f(x) * f\left(a^{n}\right) \\
& =f\left(x * a^{n}\right)
\end{aligned}
$$

Since f is $1-1$, it follows that $x * a^{n}=0$ so that $x=a$ because a is an n-atom if X. Hence $y=f(x)=f(a)$, and $f(a)$ is an n-atom of Y.

Let $A(\leq)$ be a partially ordered set with the least element 0 . If we define a binary operation $*$ on A as follows:

$$
x * y:= \begin{cases}0 & \text { if } x \leq y \\ x & \text { otherwise }\end{cases}
$$

then the algebraic structure $(A ; *, 0)$ is a $B H$-algebra. Hence any partially ordered set is regarded as a $B H$-algebra. We say that a $B H$ algebra with such defined a multiplication has the trivial structure.

For any fixed element $a \leq b$ of a $B H$-algebra X, the set

$$
[a, b]=\{x \in X \mid a \leq x \leq b\}=\{x \in X \mid a * x=x * b=0\}
$$

is called the segment of X. Note that the segment

$$
[0, b]=\{x \in X \mid x \leq b\}=\{x \in X \mid x * b=0\}
$$

is called initial, is the left annihilator of b. Since $[0, b]$ has two elements only in the case when $b \in X$ is an atom of X, a $B H$-algebra in which all initial segments have at most two elements has the trivial structure.

Proposition 3.10. Every initial segment of a positive implicative $B H^{*}$-algebra is a subalgebra of X.

Proof. Obviously, $0 \in[0, c]$. If $x, y \in[0, c]$, then $x \leq c$ and $y \leq c$. By Definition 2.2 and Lemma 2.11, we have $x * y \leq c * y \leq c$. Thus $x * y \in[0, c]$, which proves that $[0, c]$ is a subalgebra of X.

Proposition 3.11. The set-theoretic union of any two initial segments of a given positive implicative $B H^{*}$-algebra is a subalgebra.

Proof. Straightforward.
In general, initial segments of a $B H^{*}$-algebra X may not be an n-fold strong ideal of X, where n is a positive integer, as seen in the following example.

Example 3.12. Let $X:=\{0, a, b, c\}$ be a set with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	b	a	0

It is easy to check that $(X ; *, 0)$ is a $B H^{*}$-algebra. Then $[0, b]=\{0, a, b\}$ is not an ideal of X, since $c * b=a \in[0, b]$ but $c \notin[0, b]$. Also, it is not both a strong ideal and an n-fold strong ideal of X, because $(c * b) * 0^{n}=a * 0^{n}=a \in[0, b]$, but $c * 0^{n}=c \notin[0, b]$.

Proposition 3.13. Let c be a fixed element of a $B H$-algebra X and let n be a positive integer. If the initial segment $[0, c]$ is an n-fold strong ideal of X, then for all $x, z \in X$,

$$
(x * c) * z^{n} \leq c \Rightarrow x * z^{n} \leq c
$$

Proof. Assume that for all $x, z \in X,(x * c) * z^{n} \leq c$. Hence $(x * c) * z^{n} \in$ $[0, c]$. Since $c \in[0, c]$ and $[0, c]$ is an n-fold strong ideal of X, we have $x * z^{n} \in[0, c]$. Hence $x * z^{n} \leq c$.

Corollary 3.14. Let c be a fixed element of a $B H$-algebra X. If the initial segment $[0, c]$ is a strong ideal of X, then for all $x \in X$,

$$
x * c \leq c \Rightarrow x \leq c
$$

Corollary 3.15. If a non-trivial segment $[0, c]$ is an ideal or a strong ideal of a $B H$-algebra, then $x * c \neq c$ for all non-zero $x \in X$.

Proof. Let $[0, c]$, where $c \neq 0$, be an ideal. If $x * c=c$ for some $x \in X$, then $x * c \in[0, c]$. Hence $x * c \leq c$. By Corollary 3.14, we have $x \leq c$, which is a contradiction since in this case we obtain $0=x * c=c$.

References

[1] S. S. Ahn and Jin Hwa Lee, Rough Strong Ideals in BH-algebras, Honam Math. J., 32(2010), 203-215.
[2] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8(1980), 125-130.
[3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
[4] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientae Math. 1(1998), 347-354.
[5] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31(1986), 889-894.
[6] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, 50(1995), 89-96.
[7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
[8] E. H. Roh and S. Y. Kim, On BH ${ }^{*}$-subalgebras of transitive $B H^{*}$-algebras, Far East J. Math. Sci., 1(1999), 255-263.

Sun Shin Ahn
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: sunshine@dongguk.edu

Eun Mi Kim
Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea.
E-mail: duchil@hanmail.net

