Honam Mathematical J. 33 (2011), No. 2, pp. 271–277

ON *n*-FOLD STRONG IDEALS OF *BH*-ALGEBRAS

SUN SHIN AHN AND EUN MI KIM

Abstract. The notion of n-fold strong ideal in BH-algebra is introduced and some related properties of it are investigated. The role of initial segments in BH-algebras is described.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([2,3]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. BCKalgebras have some connections with other areas: D. Mundici [5] proved MV-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [6] proved that implicative commutative semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [4] introduced the notion of a BH-algebra, which is a generalization of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [8] estimated the number of BH*-subalgebras of order iin a transitive BH*-algebras by using Hao's method. S. S. Ahn and J. H. Lee ([1]) introduced the notion of strong ideals in BH-algebra and investigated some properties of it.

In this paper, we introduce the notion of n-fold strong ideal in BH-algebra and investigated some related properties of it. We also describe the role of initial segments in BH-algebras.

2. Preliminaries

By a *BH*-algebra ([4]), we mean an algebra (X; *, 0) of type (2,0) satisfying the following conditions:

(I) x * x = 0, (II) x * 0 = x,

 $^{(11) \}quad x * 0 = x,$

Received May 4, 2011. Accepted June 2, 2011. 2000 Mathematics Subject Classification. 06F35, 03G25. Key words and phrases. initial segments, ideals, (*n*-fold) strong ideals.

(III) x * y = 0 and y * x = 0 imply x = y, for all $x, y \in X$.

For brevity, we also call X a BH-algebra. In X we can define a binary operation " \leq " by $x \leq y$ if and only if x * y = 0. A non-empty subset S of a BH-algebra X is called a *subalgebra* of X if, for any $x, y \in S$, $x * y \in S$, i.e., S is a closed under binary operation.

Definition 2.1. ([4]) A non-empty subset A of a BH-algebra X is called an *ideal* of X if it satisfies:

(I1) $0 \in A$,

(I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.

An ideal A of a BH-algebra X is said to be a *translation ideal* of X if it satisfies:

(I3) $x * y \in A$ and $y * x \in A$ imply $(x * z) * (y * z) \in A$ and $(z * x) * (z * y) \in A$, $\forall x, y, z \in X$.

Obviously, $\{0\}$ and X are ideals of X. A mapping $f : X \to Y$ of *BH*-algebras is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$. For a homomorphism $f : X \to Y$ of *BH*-algebras, the *kernel* of f, denoted by Ker(f), defined to be the set

$$Ker(f) = \{ x \in X | f(x) = 0 \}.$$

Definition 2.2. ([8]) A *BH*-algebra X is called a *BH*^{*}-algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$.

Example 2.3. ([4]) Let $X := \{0, 1, 2, 3\}$ be a *BH*-algebra which is not a *BCK*-algebra with the following Cayley table:

*	0	1	2	3
0	0	1	0	0
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	1	0	0	0
2	$\begin{array}{c} 1\\ 2\\ 3\end{array}$	2	0	3
3	3	3	3	0

Then $A := \{0, 1\}$ is a translation ideal of X.

Lemma 2.4. Let X be a BH^* -algebra. Then the following identity holds:

$$0 * x = 0, \ \forall x \in X$$

Definition 2.5. A *BH*-algebra (X; *, 0) is said to be *transitive* if x * y = 0 and y * z = 0 imply x * z = 0.

272

Definition 2.6. ([1]) A non-empty subset A of a BH-algebra X is called a *strong ideal* of X if it satisfies (I1) and

(I4) $(x * y) * z, y \in A$ imply $x * z \in A$.

Lemma 2.7. ([1]) In a BH-algebra, any strong ideal is an ideal.

Lemma 2.8. ([1]) In a BH^* -algebra X, any ideal is a subalgebra.

Corollary 2.9. ([1]) Any strong ideal of BH^* -algebra is a subalgebra.

Definition 2.10. Let X be a BH-algebra. X is said to be *positive implicative* if it satisfies the following identity:

$$(x * y) * z = (x * z) * (y * z), \forall x, y, z \in X.$$

Lemma 2.11. Let X be a positive implicative BH^* -algebra. If $x \leq y$, then $x * z \leq y * z$ for any $x, y, z \in X$.

Proposition 2.12. If X is a positive implicative BH^* -algebra, then X is a transitive BH^* -algebra.

Definition 2.13. ([1]) A non-zero element $a \in X$ is called an *atom* of a *BH*-algebra X if $x \leq a$ implies x = 0 or x = a. Let n be a positive integer. A non-zero element a of a *BH*-algebra X is called an *n*-atom of X if $x * a^n = 0$ implies x = 0 or x = a.

3. *n*-fold strong ideals

For any elements x and y of a BH-algebra X, $x * y^n$ denotes $(\cdots ((x * y) * y) * \cdots) * y$ in which y occurs n times.

Definition 3.1. A non-empty subset A of a BH-algebra X is called an *n*-fold strong ideal of X if it satisfies (I1) and

(I5) for every $x, y, z \in X$ there exists a natural number n such that $x * z^n \in A$ whenever $(x * y) * z^n$ and $y \in A$.

For a BH-algebra X, obviously $\{0\}$ and X itself are n-fold strong ideals of X for every positively integer n.

Example 3.2. Let $X := \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0			3
0	0	0	0	0
1	1	0	0	0
2	2	$\begin{array}{c} 0 \\ 2 \\ 2 \end{array}$	0	0
$\begin{array}{c} 1\\ 2\\ 3\end{array}$	$\begin{array}{c} 0\\ 1\\ 2\\ 3\end{array}$	2	2	0

Then (X; *, 0) is a *BH*-algebra. It is easy to check that $A := \{0, 1, 2\}$ is an *n*-fold strong ideal of X for every positive integer *n*.

The 1-fold strong ideal is precisely a strong ideal. Taking z := 0 in (I5) and using (II), then $x * y = (x * y) * 0^n \in A$ and $y \in A$ which imply that $x = x * 0^n \in A$. Hence we have the following theorem.

Theorem 3.3. In a BH-algebra, every n-fold strong ideal is an ideal.

Combining Lemma 2.8 and Theorem 3.3, we have the following corollary.

Corollary 3.4. In a BH^* -algebra, every *n*-fold strong ideal is a subalgebra.

The converse of Corollary 3.4 may not be true as seen in the following example.

Example 3.5. Let $X = \{0, 1, 2, 3\}$ be a *BH*-algebra as in Example 3.2. Then (X; *, 0) is a *BH**-algebra. The subset $C = \{0, 2\}$ of X is a subalgebra, but not an *n*-fold strong ideal for every positive integer n, since $(3 * 2) * 0^n = 2 * 0^n = 2 \in C$ and $3 * 0^n = 3 \notin C$.

Now we give a condition for a BH-algebra to be an n-fold strong ideal.

Theorem 3.6. Let A be a subalgebra a BH^* -algebra X. Then A is an n-fold strong ideal of X if and only if $(y * x) * z^n \notin A$ whenever $y * z^n \notin A$ and $x \in A$.

Proof. Let A be an n-fold strong ideal of X and let $x, y, z \in X$ be such that $y * z^n \notin A$ and $x \in A$. If $(y * x) * z^n \in A$, then $y * z^n \in A$ by (I5). This is a contradiction. Hence $(y * x) * z^n \notin A$.

Conversely, let A be a subalgebra X in which $y * z^n \notin A$ and $x \in A$ imply $(y * x) * z^n \notin A$. Obviously, $0 \in A$. Let $x, y, z \in X$ be such that $(x * y) * z^n \in A$ and $y \in A$, If $x * z^n \notin A$, then $(x * y) * z^n \notin A$ by assumption. This is impossible. Hence A is an n-fold strong ideal of X. \Box

Theorem 3.7. Let $f : X \to Y$ be a homomorphism of a *BH*-algebra X. If B is an n-fold strong ideal of Y, then $f^{-1}(B)$ is an n-fold strong ideal of X for every positive integer n.

Proof. Since $f(0) = 0 \in B$, we have $0 \in f^{-1}(B)$. Let $x, y, z \in X$ be such that $(x * y) * z^n \in f^{-1}(B)$ and $y \in f^{-1}(B)$. Then $(f(x) * f(y)) * f(z)^n = f((x * y) * z^n) \in B$ and $f(y) \in B$. Since B is an n-fold strong

274

ideal of Y, it follows from (I5) that $f(x * z^n) = f(x) * f(z)^n \in B$ so that $x * z^n \in f^{-1}(B)$. Hence $f^{-1}(B)$ is an n-fold strong ideal of X. \Box

Corollary 3.8. Let $f : X \to Y$ be a homomorphism of *BH*-algebras. Then $Kerf := \{x \in X | f(x) = 0\}$ is an *n*-fold strong ideal of X for every positive integer *n*.

Theorem 3.9. Let $f : X \to Y$ be an isomorphism of *BH*-algebras. If a non-zero element *a* is an *n*-atom of *X*, then f(a) is an *n*-atom of *Y* where *n* is a positive integer.

Proof. Let y be a non-zero element of Y such that $y * f(a)^n = 0$. Then there exists a non-zero element $x \in X$ such that f(x) = y. Thus

$$f(0) = 0 = y * f(a)^n$$

= $f(x) * f(a)^n = f(x) * f(a^n)$
= $f(x * a^n).$

Since f is 1-1, it follows that $x * a^n = 0$ so that x = a because a is an *n*-atom if X. Hence y = f(x) = f(a), and f(a) is an *n*-atom of Y. \Box

Let $A(\leq)$ be a partially ordered set with the least element 0. If we define a binary operation * on A as follows:

$$x * y := \begin{cases} 0 & \text{if } x \le y \\ x & \text{otherwise} \end{cases}$$

then the algebraic structure (A; *, 0) is a *BH*-algebra. Hence any partially ordered set is regarded as a *BH*-algebra. We say that a *BH*algebra with such defined a multiplication has the *trivial structure*.

For any fixed element $a \leq b$ of a BH-algebra X, the set

$$[a,b] = \{x \in X | a \le x \le b\} = \{x \in X | a * x = x * b = 0\}$$

is called the *segment* of X. Note that the segment

$$[0,b] = \{x \in X | x \le b\} = \{x \in X | x \ast b = 0\}$$

is called *initial*, is the left annihilator of b. Since [0, b] has two elements only in the case when $b \in X$ is an atom of X, a *BH*-algebra in which all initial segments have at most two elements has the trivial structure.

Proposition 3.10. Every initial segment of a positive implicative BH^* -algebra is a subalgebra of X.

Proof. Obviously, $0 \in [0, c]$. If $x, y \in [0, c]$, then $x \leq c$ and $y \leq c$. By Definition 2.2 and Lemma 2.11, we have $x * y \leq c * y \leq c$. Thus $x * y \in [0, c]$, which proves that [0, c] is a subalgebra of X. \Box

Sun Shin Ahn and Eun Mi Kim

Proposition 3.11. The set-theoretic union of any two initial segments of a given positive implicative BH^* -algebra is a subalgebra.

Proof. Straightforward.

In general, initial segments of a BH^* -algebra X may not be an *n*-fold strong ideal of X, where n is a positive integer, as seen in the following example.

Example 3.12. Let $X := \{0, a, b, c\}$ be a set with the following Cayley table:

It is easy to check that (X; *, 0) is a BH^* -algebra. Then $[0, b] = \{0, a, b\}$ is not an ideal of X, since $c * b = a \in [0, b]$ but $c \notin [0, b]$. Also, it is not both a strong ideal and an *n*-fold strong ideal of X, because $(c * b) * 0^n = a * 0^n = a \in [0, b]$, but $c * 0^n = c \notin [0, b]$.

Proposition 3.13. Let c be a fixed element of a BH-algebra X and let n be a positive integer. If the initial segment [0, c] is an n-fold strong ideal of X, then for all $x, z \in X$,

$$(x * c) * z^n \le c \Rightarrow x * z^n \le c.$$

Proof. Assume that for all $x, z \in X$, $(x*c)*z^n \leq c$. Hence $(x*c)*z^n \in [0, c]$. Since $c \in [0, c]$ and [0, c] is an *n*-fold strong ideal of X, we have $x * z^n \in [0, c]$. Hence $x * z^n \leq c$.

Corollary 3.14. Let c be a fixed element of a BH-algebra X. If the initial segment [0, c] is a strong ideal of X, then for all $x \in X$,

$$x * c \le c \Rightarrow x \le c.$$

Corollary 3.15. If a non-trivial segment [0, c] is an ideal or a strong ideal of a *BH*-algebra, then $x * c \neq c$ for all non-zero $x \in X$.

Proof. Let [0, c], where $c \neq 0$, be an ideal. If x * c = c for some $x \in X$, then $x * c \in [0, c]$. Hence $x * c \leq c$. By Corollary 3.14, we have $x \leq c$, which is a contradiction since in this case we obtain 0 = x * c = c. \Box

276

References

- S. S. Ahn and Jin Hwa Lee, Rough Strong Ideals in BH-algebras, Honam Math. J., 32(2010), 203-215.
- [2] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8(1980), 125-130.
- [3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
- [4] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Scientae Math. 1(1998), 347-354.
- [5] D. Mundici, MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon., 31(1986), 889-894.
- [6] J. Meng, Implicative commutative semigroups are equivalent to a class of BCKalgebras, Semigroup Forum, 50(1995), 89-96.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa, Seoul, 1994.
- [8] E. H. Roh and S. Y. Kim, On BH*-subalgebras of transitive BH*-algebras, Far East J. Math. Sci., 1(1999), 255-263.

Sun Shin Ahn Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: sunshine@dongguk.edu

Eun Mi Kim Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea. E-mail: duchil@hanmail.net