SOME NEW PROPERTIES ON THE q-GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH q-BERNSTEIN POLYNOMIALS

Serkan Araci, Dilek Erdal and Dong-Jin Kang

Abstract

The purpose of this study is to obtain some relations between q-Genocchi numbers and q-Bernstein polynomials by using fermionic p-adic q-integral on \mathbb{Z}_{p}.

1. Introduction, Definitions and Notations

Let p be a fixed odd prime number. Throughout this paper we use the following notations. By \mathbb{Z}_{p} we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^{*}=\mathbb{N} \cup\{0\}$. The p-adic absolute value is defined by $|x|_{p}=\frac{1}{p}$. In this paper we assume $|q-1|_{p}<1$ as an indeterminate. In [17]-[20], Kim defined the fermionic p-adic q-integral on \mathbb{Z}_{p} as follows:

$$
\begin{equation*}
I_{-q}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{-q}} \sum_{x=0}^{p^{N}-1} g(x)(-q)^{x} \tag{1.1}
\end{equation*}
$$

For $k, n \in \mathbb{N}^{*}$ and $x \in[0,1]$, Kim's q-Bernstein polynomials are given as follows ([8]):

$$
\begin{equation*}
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k}, \tag{1.2}
\end{equation*}
$$

Received April 26, 2011. Accepted May 10, 2011.
2000 Mathematics Subject Classification. Primary 46A15, Secondary 41A65.
Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and polynomials, Bernstein polynomials, q-Bernstein polynomials.
where, $[x]_{q}$ is a q-extension of x defined by (see $[1]-[22]$) :

$$
[x]_{q}=\frac{1-q^{x}}{1-q}
$$

Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
For $n \in \mathbb{N}^{*}$, let us consider the q-Genocchi polynomials as follows:

$$
\begin{equation*}
G_{n+1, q}(x)=(n+1) \int_{\mathbb{Z}_{p}}[x+y]_{q}^{n} d \mu_{-q}(y) \tag{1.3}
\end{equation*}
$$

In the special case, $x=0, G_{n, q}(0)=G_{n, q}$ are called the q-Genocchi numbers.

In this paper we obtain some relations between the q-Bernstein polynomials and the q-Genocchi numbers. From these relations, we derive some interesting identities on the q-Genocchi numbers and polynomials.
2. On the q-Genocchi numbers and q-Bernstein polynomials

By the definition of q-Genocchi polynomials, we easily get

$$
\begin{aligned}
G_{n+1, q}(x) & =(n+1) \int_{\mathbb{Z}_{p}}[x+y]_{q}^{n} d \mu_{-q}(y) \\
& =(n+1) \frac{[2]_{q}}{(1-q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k x} \frac{(-1)^{k}}{1+q^{k+1}} \\
& =(n+1)[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l}[x+l]_{q}^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!} & =[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[x+n]_{q} t} \\
& =[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{\left([x]_{q}+q^{x}[n]_{q}\right) t} \\
& =\left(\frac{e^{[x]_{q} t}}{q^{x}}\right)\left([2]_{q} q^{x} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{\left(q^{x} t\right)[n]_{q}}\right) \\
& =\left(\sum_{n=0}^{\infty}[x]_{q}^{n} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} q^{(n-1) x} G_{n, q} \frac{t^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} q^{(k-1) x}[x]_{q}^{n-k} G_{k, q}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Therefore we obtain the following theorem.

Theorem 1. For $n \in \mathbb{N}^{*}$, we have

$$
\begin{aligned}
G_{n+1, q}(x) & =(n+1)[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l}[x+l]_{q}^{n} \\
& =\sum_{k=0}^{n+1}\binom{n+1}{k} q^{(k-1) x}[x]_{q}^{n+1-k} G_{k, q} \\
& =q^{-x}\left([x]_{q}+q^{x} G_{q}\right)^{n+1}
\end{aligned}
$$

with usual convention about replacing $\left(G_{q}\right)^{n}$ by $G_{n, q}$.

By Theorem 1, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[x+n]_{q} t} \tag{2.1}
\end{equation*}
$$

By (2.1), we get

$$
\begin{aligned}
G_{n+1, q^{-1}}(1-x) & =(n+1) \int_{\mathbb{Z}_{p}}[1-x+y]_{q^{-1}}^{n} d \mu_{-q^{-1}}(y) \\
& =(n+1) \frac{1+q^{-1}}{\left(1-q^{-1}\right)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{-k(1-x)} \frac{(-1)^{k}}{1+q^{-k-1}} \\
& =(n+1)(-1)^{n} q^{n} \frac{[2]_{q}}{(1-q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{k x} \frac{(-1)^{k}}{1+q^{k+1}} \\
& =(-1)^{n} q^{n} G_{n+1, q}(x) .
\end{aligned}
$$

Therefore, we obtain the following theorem.
Theorem 2. For $n \in \mathbb{N}^{*}$, we have

$$
G_{n, q^{-1}}(1-x)=(-1)^{n-1} q^{n-1} G_{n, q}(x)
$$

From (2.1) we note that

$$
\begin{equation*}
q \sum_{n=0}^{\infty} G_{n, q}(1) \frac{t^{n}}{n!}+\sum_{n=0}^{\infty} G_{n, q} \frac{t^{n}}{n!}=[2]_{q} t \tag{2.2}
\end{equation*}
$$

By (2.2), we get the following recurrence formula:

$$
G_{0, q}=0, q G_{n, q}(1)+G_{n, q}= \begin{cases}{[2]_{q},} & n=1 \tag{2.3}\\ 0, & n>1\end{cases}
$$

From (2.3) and Theorem 1, we have the following theorem.
Theorem 3. For $n \in \mathbb{N}^{*}$, we have

$$
G_{0, q}=0, \text { and } q\left(q G_{q}+1\right)^{n}+G_{n, q}= \begin{cases}{[2]_{q},} & n=1 \\ 0, & n>1\end{cases}
$$

with usual convention about replacing $\left(G_{q}\right)^{n}$ by $G_{n, q}$.
For $n \in \mathbb{N}$, by Theorem 3 , we note that

$$
\begin{aligned}
q^{-2} G_{n, q}(2) & =q^{-2} \sum_{l=0}^{n}\binom{n}{l} q^{l}\left(q G_{q}+1\right)^{l} \\
& =n q^{-2}\left([2]_{q}-G_{1, q}\right)+q^{-2} \sum_{l=0}^{n}\binom{n}{l} q^{l} G_{l, q}(1) \\
& =n q^{-1}-q^{-3} \sum_{l=0}^{n}\binom{n}{l} q^{l} G_{l, q} \\
& =n q^{-1}+q^{-4} G_{n, q}, \text { if } n>1
\end{aligned}
$$

Therefore, we have the following theorem.
Theorem 4. For $n \in \mathbb{N}$, we have

$$
G_{n+1, q}(2)=q^{-2} G_{n+1, q}+(n+1) q
$$

From Theorem 2, we see that

$$
\begin{align*}
& (n+1) \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q}(x) \tag{2.4}\\
= & (-q)^{n}(n+1) \int_{\mathbb{Z}_{p}}[x-1]_{q}^{n} d \mu_{-q}(x) \\
= & (-1)^{n} q^{n} G_{n+1, q}(-1)=G_{n+1, q^{-1}}(2) .
\end{align*}
$$

Therefore, we have the following theorem.
Theorem 5. For $n \in \mathbb{N}^{*}$, we have

$$
(n+1) \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q}(x)=G_{n+1, q^{-1}}(2)
$$

Let $n \in \mathbb{N}$. By Theorem 4 and Theorem 5, we get

$$
\begin{align*}
& (n+1) \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q}(x) \tag{2.5}\\
= & q^{2} G_{n+1, q^{-1}}+\frac{(n+1)}{q}
\end{align*}
$$

For (2.5), we obtain

$$
(n+1) \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q}(x)=q^{2} G_{n+1, q^{-1}}+\frac{(n+1)}{q}
$$

Corollary 1. For $n \in \mathbb{N}^{*}$, we have

$$
\int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} d \mu_{-q}(x)=\frac{q^{2}}{n+1} G_{n+1, q^{-1}}+\frac{1}{q}
$$

3. New identities on the q-Genocchi numbers and q-Genocchi

 polynomialsIn this section, we give some interesting relationship between the q-Genocchi numbers and q-Bernstein polynomials.

For $x \in \mathbb{Z}_{p}$, the p-adic analogues of q-Bernstein polynomials are given by

$$
\begin{equation*}
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k}, \text { where } n, k \in \mathbb{N}^{*} \tag{3.1}
\end{equation*}
$$

By (3.1), Kim [10] gave the symmetry of q-Bernstein polynomials as follows:

$$
\begin{equation*}
B_{k, n}(x, q)=B_{n-k, n}\left(1-x, q^{-1}\right) \tag{3.2}
\end{equation*}
$$

Thus, from Corollary 6, (3.1) and (3.2), we see that

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q}(x) & =\int_{\mathbb{Z}_{p}} B_{n-k, n}\left(1-x, q^{-1}\right) d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n-l} d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l}\left(\frac{q^{2}}{n-l+1} G_{n-l+1, q^{-1}}+\frac{1}{q}\right) .
\end{aligned}
$$

For $n, k \in \mathbb{N}^{*}$ with $n>k$, we obtain

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q}(x) \\
(3.3)= & \binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l}\left(\frac{q^{2}}{n-l+1} G_{n-l+1, q^{-1}}+\frac{1}{q}\right) \\
= & \begin{cases}\frac{q^{2}}{n+1} G_{n+1, q^{-1}}+\frac{1}{q}, & \text { if } k=0, \\
\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l}\left(\frac{q^{2}}{n-l+1} G_{n-l+1, q^{-1}}+\frac{1}{q}\right), & \text { if } k>0 .\end{cases}
\end{aligned}
$$

Let us take the fermionic q-integral on \mathbb{Z}_{p} for the q-Bernstein polynomials of degree n as follows:

$$
\begin{aligned}
(3.4) \int_{\mathbb{Z}_{p}} B_{k, n}(x, q) d \mu_{-q}(x) & =\binom{n}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k} d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} \frac{G_{l+k+1, q}}{l+k+1} .
\end{aligned}
$$

Therefore, by (3.3) and (3.4), we obtain the following theorem.
Theorem 6. For $n, k \in \mathbb{N}^{*}$ with $n>k$. we have

$$
\sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} \frac{G_{l+k+1, q}}{l+k+1}= \begin{cases}\frac{q^{2}}{n+1} G_{n+1, q^{-1}}+\frac{1}{q}, & \text { if } k=0 \\ \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l}\left(\frac{q^{2}}{n-l+1} G_{n-l+1, q^{-1}}+\frac{1}{q}\right), & \text { if } k>0\end{cases}
$$

Let $n_{1}, n_{2}, k \in \mathbb{N}^{*}$ with $n_{1}+n_{2}>2 k$. Then we get

$$
\left.\begin{array}{rl}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q}(x) \\
= & \binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n_{1}+n_{2}-l} d \mu_{-q}(x) \\
= & \binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l}\left(\frac{q^{2}}{n_{1}+n_{2}-l+1} G_{n_{1}+n_{2}-l+1, q^{-1}}+\frac{1}{q}\right) \\
= & \left\{\begin{array}{cc}
\frac{q^{2}}{n_{1}+n_{2}+1} G_{n_{1}+n_{2}+1, q^{-1}}+\frac{1}{q}, & \text { if } k=0, \\
\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l}\left(\frac{q^{2}}{n_{1}+n_{2}-l+1}\right.
\end{array} G_{n_{1}+n_{2}-l+1, q^{-1}}+\frac{1}{q}\right), \\
\text { if } k \neq 0 .
\end{array}\right] .
$$

Therefore, we obtain the following theorem.
Theorem 7. For $n_{1}, n_{2}, k \in \mathbb{N}^{*}$ with $n_{1}+n_{2}>2 k$, we have

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q}(x) \\
= & \begin{cases}\frac{q^{2}}{n_{1}+n_{2}+1} G_{n_{1}+n_{2}+1, q^{-1}}+\frac{1}{q}, & \text { if } k=0, \\
\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l}\left(\frac{q^{2}}{n_{1}+n_{2}-l+1} G_{n_{1}+n_{2}-l+1, q^{-1}}+\frac{1}{q}\right), & \text { if } k \neq 0 .\end{cases}
\end{aligned}
$$

From the binomial theorem, we can derive the following equation.

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) d \mu_{-q}(x) \\
(3.5)= & \prod_{i=1}^{2}\binom{n_{i}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q}^{2 k+l} d \mu_{-q}(x) \\
= & \prod_{i=1}^{2}\binom{n_{i}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} \frac{G_{l+2 k+1, q}}{l+2 k+1} .
\end{aligned}
$$

Thus, for theorem 8 and (3.6), we obtain the following corollary.
Corollary 2. Let $n_{1}, n_{2}, k \in \mathbb{N}^{*}$ with $n_{1}+n_{2}>2 k$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n_{1}+n_{2}-2 k}\binom{n_{1}+n_{2}-2 k}{l}(-1)^{l} \frac{G_{l+2 k+1, q}}{l+2 k+1} \\
&=\left\{\begin{array}{ll}
\frac{q^{2}}{n_{1}+n_{2}+1} G_{n_{1}+n_{2}+1, q^{-1}}+\frac{1}{q}, & \text { if } k=0 \\
\sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l}\left(\frac{q^{2}}{n_{1}+n_{2}-l+1}\right.
\end{array} G_{n_{1}+n_{2}-l+1, q^{-1}}+\frac{1}{q}\right), \\
& \text { if } k \neq 0 .
\end{aligned}
$$

For $x \in \mathbb{Z}_{p}$ and $s \in \mathbb{N}$ with $s \geq 2$, let $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{N}^{*}$ with $\sum_{l=1}^{s} n_{l}>s k$. Then we take the fermionic p-adic q-integral on \mathbb{Z}_{p} for the q-Bernstein polynomials of degree n as follows:

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} \underbrace{B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) \ldots B_{k, n_{s}}(x, q)}_{s-\text { times }} d \mu_{-q}(x) \\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{s k}[1-x]_{q-1}^{n_{1}+n_{2}+\ldots+n_{s}-s k} d \mu_{-q}(x) \\
& =\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} \int_{\mathbb{Z}_{p}}[1-x]_{q}^{n_{1}+1}+n_{2}+\ldots+n_{s}-s k \quad d \mu_{-q}(x) \\
& = \begin{cases}\frac{q^{2}}{n_{1}+\ldots n_{s}+1} G_{n_{1}+\ldots+n_{s}+1, q-1}+\frac{1}{q}, & \text { if } k=0, \\
\prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l}\left(\frac{q^{2}}{n_{1}+\ldots+n_{s}-l+1} G_{n_{1}+\ldots+n_{s}-l+1, q-1}+\frac{1}{q}\right), & \text { if } k \neq 0 .\end{cases}
\end{aligned}
$$

Therefore, we obtain the following theorem.
Theorem 8. For $s \in \mathbb{N}$ with $s \geq 2$, let $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{N}^{*}$ with $\sum_{l=1}^{s} n_{l}>s k$. Then we have

$$
\begin{aligned}
& \int_{z_{p}} \prod_{i=1}^{s} B_{k, n_{i}}(x) d \mu_{-q}(x)
\end{aligned}
$$

From the definition of q-Bernstein polynomials and the binomial theorem, we easily get

$$
\begin{aligned}
& \int_{\mathbb{Z}_{p}} \underbrace{B_{k, n_{1}}(x, q) B_{k, n_{2}}(x, q) \ldots B_{k, n_{s}}(x, q)}_{s-\text { times }} d \mu_{-q}(x) \\
= & \prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=0}^{n_{1}+\ldots+n_{s}-s k}\binom{\sum_{d=1}^{s}\left(n_{d}-k\right)}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q}^{s k+l} d \mu_{-q}(x) \\
(3.6)= & \prod_{i=1}^{s}\binom{n_{i}}{k} \sum_{l=1}^{n_{1}+\ldots+n_{s}-s k}\binom{\sum_{d=1}^{s}\left(n_{d}-k\right)}{l}(-1)^{l} \frac{G_{l+s+1, q}}{l+s k+1} .
\end{aligned}
$$

Therefore, from (3.6) and Theorem 10. we have the following corollary.

Corollary 3. For $s \in \mathbb{N}$ with $s \geq 2$, let $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{N}^{*}$ with $\sum_{l=1}^{s} n_{l}>s k$. we have

$$
\begin{aligned}
& \sum_{l=1}^{n_{1}+\ldots+n_{s}-s k}\binom{\sum_{d=1}^{s}\left(n_{d}-k\right)}{l}(-1)^{l} \frac{G_{l+s k+1, q}}{l+s k+1} \\
&=\left\{\begin{array}{ll}
\frac{q^{2}}{n_{1}+\ldots+n_{s}+1} \\
\sum_{l=0}^{s k}\binom{s k}{l}(-1)^{s k+l}\left(\frac{q^{2}}{}+\ldots+n_{s}+1, q^{-1}+\frac{1}{q}\right. \\
n_{1}+\ldots n_{s}-l+1
\end{array} G_{n_{1}+\ldots+n_{s}-l+1, q^{-1}}+\frac{1}{q}\right), \\
& \text { if } k=0,
\end{aligned}, .
$$

References

[1] Açıkgöz, M. and Şimşek, Y., A New generating function of q-Bernstein type polynomials and their interpolation function, Abstract and Applied Analysis, Article ID 769095, 12 pages, doi: 10.1155/2010/769095.01-313.
[2] Açıkgöz, M., Aracı, S. and Cangül, N. İ., A Note on the modified q Bernstein polynomials for functions of several variables and their reflections on q-Volkenborn integration, Applied Mathematics and Computation(in press)
[3] Gouvea, F. Q., p-adic Numbers An Introduction, 2nd Edi., Springer-Verlag, Berlin, Heidelberg and New York, 2000.
[4] Kim, T., A New Approach to q-Zeta Function, Adv. Stud. Contemp. Math. 11 (2) 157-162.
[5] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[6] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978v1 [math.NT]
[7] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.
[8] Kim, T., A note q-Bernstein polynomials, Russ. J. Math. phys. 18(2011), 41-50.
[9] Kim, T., q - Volkenborn integration, Russ. J. Math. phys. 9(2002), 288-299.
[10] Kim, T., q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15(2008), 51-57.
[11] Kim, T. Choi, J. Kim, Y. H. Ryoo, C. S., On the fermionic p-adic integral representation of Bernstein polynomials associated with Euler numbers and polynomials, J. Inequal. Appl. 2010(2010), Art ID 864247, 12pp.
[12] Kim, T. Choi, J. Kim, Y. H., Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers, Adv. Stud. Contemp. Math. 20(2010), 335-341.
[13] Kim, T., An invariant p-adic q-integrals on \mathbb{Z}_{p}, Applied Mathematics Letters, vol. 21, pp. 105-108,2008.
[14] Kim, T. Choi, J. Kim, Y. H., q-Bernstein Polynomials Associated with q-Stirling Numbers and Carlitz's q-Bernoulli Numbers, Abstract and Applied Analysis, Article ID 150975, 11 pages, doi:10.1155/2010/150975
[15] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications, Article ID 71452, 8 pages, doi:10.1155/2007/71452.
[16] Kim, T. Choi, J. Kim, Y. H. and Jang, L. C., On p-Adic Analogue of q-Bernstein Polynomials and Related Integrals, Discrete Dynamics in Nature and Society, Article ID 179430, 9 pages, doi:10.1155/2010/179430.
[17] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15-27.
[18] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218-225.
[19] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16 (2009), no.4,484-491.
[20] Kim, T., q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys., 15 (2008), no. 1, 51-57.
[21] Rim, S-H. Jin, J-H. Moon, E-J. and Lee, Sun-Jung., On Multiple Interpolation Functions of the q-Genocchi Polynomials, Journal of Inequalities and Applications, Article ID 13 pages, doi:10.1155/2010/351419
[22] Simsek, Y., Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, Journal of Mathematical Analysis and Application, vol. 324, no. 2, pp. 790-804, 2006.
[23] Jang, L-C. Ryoo, C-S., A note on the Multiple Twisted Carlitz's Type q Bernoulli Polynomials, Abstract and Applied Analysis, Article ID 498173, 7 pages, doi:10.1155/2008/498173.

Serkan Aracı
Department of Mathematics, University of Gaziantep, Faculty of Science and Arts,
Gaziantep 27310, Turkey.
E-mail: mtsrkn@hotmail.com

Dilek Erdal
Department of Mathematics, University of Gaziantep, Faculty of Science and Arts,
Gaziantep 27310, Turkey.
E-mail: dilekvecii@mynet.com

Dong-Jin Kang
Information Technology Service, Kyungpook National University, Taegu 702-701, Korea.
E-mail: djkang@knu.ac.kr

