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RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN

TRANSFORM, CONVOLUTION AND THE FIRST

VARIATION ON YEH-WIENER SPACE

Bong Jin Kim and Byoung Soo Kim

Abstract. We examine the various relationships that exist among
the Fourier-Yeh-Feynman transform, convolution and the first vari-
ation for functionals on Yeh-Wiener space that belong to a Banach
algebra S(Q).

1. Definitions and preliminaries

Let Q = [0, S] × [0, T ] and let C(Q) denote Yeh-Wiener space; that
is, the space of all real-valued continuous functions x(s, t) on Q with
x(s, 0) = x(0, t) = 0 for all 0 ≤ s ≤ S and 0 ≤ t ≤ T . Yeh [15] defined
a Gaussian measure mY on C(Q) (later modified in [16]) such that as
a stochastic process {x(s, t) : (s, t) ∈ Q} has mean E[x(s, t)] = 0 and
covariance E[x(s, t)x(u, v)] = min{s, u}min{t, v}.

LetM denote the class of all Yeh-Wiener measurable subsets of C(Q)
and we denote the Yeh-Wiener integral of a Yeh-Wiener integrable func-
tional F by

(1.1)

∫
C(Q)

F (x) dmY (x).

A subset E of C(Q) is said to be scale-invariant measurable provided
ρE is Yeh-Wiener measurable for every ρ > 0, and a scale-invariant
measurable set N is said to be scale-invariant null provided mY (ρN) = 0
for every ρ > 0. A property that holds except on a scale-invariant null
set is said to hold scale-invariant almost everywhere (s-a.e.). Given two
complex-valued functions F and G on C(Q), we say that F = G s-a.e.
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and write F ≈ G if F (ρx) = G(ρx) for mY almost every x ∈ C(Q) for
all ρ > 0.

Let C+ and C∼+ denote the set of complex numbers with positive real
part and nonzero complex numbers with nonnegative real part, respec-
tively.

Let F be a complex valued measurable functional on C(Q) such that

(1.2) JF (λ) =

∫
C(Q)

F (λ−1/2x) dmY (x)

exists as a finite number for all real λ > 0. If there exists a function
J∗F (λ) analytic in C+ such that J∗F (λ) = JF (λ) for all λ > 0, then J∗F (λ)
is defined to be the analytic Yeh-Wiener integral of F over C(Q) with
parameter λ, and for λ ∈ C+ we write

(1.3)

∫ aywλ

C(Q)
F (x) dmY (x) = J∗F (λ).

If the following limit exists for nonzero real q, then we call it the analytic
Yeh-Feynman integral of F over C(Q) with parameter q and we write

(1.4)

∫ ayfq

C(Q)
F (x) dmY (x) = lim

λ→−iq

∫ aywλ

C(Q)
F (x) dmY (x)

where λ approaches −iq through C+.

Now we introduce the definitions of analytic Fourier-Yeh-Feynman
transform, convolution and the first variation for functionals defined on
C(Q). Let q be a nonzero real number.

Definition 1.1. Let F be a function on C(Q). For λ ∈ C+ and
y ∈ C(Q), let

(1.5) Tλ(F )(y) =

∫ aywλ

C(Q)
F (x+ y) dmY (x).

For 1 < p < ∞, we define the Lp analytic Fourier-Yeh-Feynman trans-

form T
(p)
q (F ) of F on C(Q) by the formula (λ ∈ C+)

(1.6) T (p)
q (F )(y) = l. i.m.

λ→−iq
Tλ(F )(y),

whenever this limit exists; that is, for each ρ > 0,

(1.7) lim
λ→−iq

∫
C(Q)

|Tλ(F )(ρx)− T (p)
q (F )(ρx)|p′ dmY (x) = 0
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where 1/p + 1/p′ = 1. We define the L1 analytic Fourier-Yeh-Feynman

transform T
(1)
q (F ) of F by (λ ∈ C+)

(1.8) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y),

for s-a.e. y ∈ C(Q), whenever this limit exists [12].

Recently, Kim, Kim and Yoo [10, 11] studied an integral transform
which is different from the Fourier-Yeh-Feynman transform on Yeh-
Wiener space.

Definition 1.2. Let F and G be functionals on C(Q). For λ ∈ C+,
we define their convolution by

(1.9) (F ∗G)λ(y) =

∫ aywλ

C(Q)
F
(y + x√

2

)
G
(y − x√

2

)
dmY (x)

if it exists. Moreover if λ = −iq for nonzero real q, the convolution is
defined by

(1.10) (F ∗G)q(y) =

∫ ayfq

C(Q)
F
(y + x√

2

)
G
(y − x√

2

)
dmY (x)

if it exists [12].

It is easy to see that commutative law and distributive law hold for
the convolution.

Definition 1.3. Let F be a function on C(Q) and let w ∈ C(Q). We
define the first variation of F (x) in the direction w by

(1.11) δF (x|w) =
∂

∂t
F (x+ tw)|t=0

if it exists.

Various results involving Fourier-Feynman transform on Wiener space
have been established and research based on this definition is continuing
at the present time. For a detailed survey of the previous work on the
Fourier-Feynman transform and related topics, see [14].

Next we describe the class of functionals that we work with in this
paper after which we will describe the results of this paper.

The Banach algebra S(Q) consists of functionals expressible in the
form

(1.12) F (x) =

∫
L2(Q)

exp{i〈α, x〉} df(α)
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for s-a.e. x in C(Q), where f is an element of M(L2(Q)), the space of
complex valued countably additive Borel measures on L2(Q) and 〈α, x〉
denotes the Paley-Wiener-Zygmund stochastic integral

∫
Q α(s, t) dx(s, t).

Note that, for α ∈ L2(Q), the PWZ integral 〈α, x〉 exists for s-a.e.
x ∈ C(Q).

The Banach algebra S(Q) is the Yeh-Wiener space version of the
Banach algebra S on classical Wiener space introduced by Cameron
and Storvick in [3].

It is known that

(1.13)

∫
C(Q)

exp{i〈α, x〉} dmY (x) = exp
{
−1

2
‖α‖2

}
and

(1.14)

∫
C(Q)

|〈α, x〉| dmY (x) =
( 2

π

)1/2
‖α‖,

where ‖α‖ = (
∫
Q(α(s, t))2 ds dt)1/2. Moreover if F ∈ S(Q) is given by

(1.12), then F is analytic Yeh-Feynman integrable and

(1.15)

∫ ayfq

C(Q)
F (x) dmY (x) =

∫
L2(Q)

exp
{
− i

2q
‖α‖2

}
df(α).

We are now ready to discuss the results of this paper. Kim and
Yang [12] established existence of Fourier-Yeh-Feynman transform and
convolution of functionals in the Banach algebra S(Q) on Yeh-Wiener
space. We restate the results in Section 2 of this paper. Moreover we
will show that the first variation of functionals in S(Q) exists and also
belongs to S(Q).

In Section 3, we examine all relationships involving exactly two of
the three concepts of Fourier-Yeh-Feynman transform, convolution and
the first variation of functionals in S(Q).

Finally in Section 4, we examine some of the relationships involving
all three of these concepts where each concepts is used exactly once. The
results in this paper extend previous results on Wiener space [1, 2, 4, 7,
8, 9, 13] or abstract Wiener space [5, 6] to the Yeh-Wiener space.

2. Transform, convolution and the first variation

In [12], Kim and Yang obtained several results involving the Fourier-
Yeh-Feynman transform and convolution for functionals in S(Q). We
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begin this section by restating the existence of the Fourier-Yeh-Feynman
transform and convolution for functionals in S(Q).

Theorem 2.1 (Theorem 3.1 in [12]). Let F ∈ S(Q) be given by
(1.12). Then for all p with 1 ≤ p < ∞ and for all nonzero real q, the

Fourier-Yeh-Feynman transform T
(p)
q (F ) exists, belongs to S(Q) and is

given by the formula

(2.1) T (p)
q (F )(y) =

∫
L2(Q)

exp{i〈α, y〉} dft(α)

for s-a.e. y in C(Q), where ft is the measure defined by

(2.2) ft(E) =

∫
E

exp
{
− i

2q
‖α‖2

}
df(α)

for E ∈ B(L2(Q)).

Theorem 2.2 (Theorem 3.4 in [12]). Let F,G ∈ S(Q) with corre-
sponding finite Borel measures f and g in M(L2(Q)), respectively. Then
for all nonzero real q, the convolution product (F ∗ G)q exists, belongs
to S(Q) and is given by the formula

(2.3) (F ∗G)q(y) =

∫
L2(Q)

exp{i〈γ, y〉} dhc(γ)

for s-a.e. y in C(Q), where hc = h ◦ φ−1 and φ : L2(Q)2 → L2(Q) is a
function defined by φ(α, β) = 1√

2
(α + β) and h is the measure defined

by

(2.4) h(E) =

∫
E

exp
{
− i

4q
‖α− β‖2

}
df(α) dg(β)

for E ∈ B(L2(Q)2).

In the next theorem, we obtain a formula for the first variation of
functionals in S(Q).

Theorem 2.3. Let F ∈ S(Q) be given by (1.12) and assume that
‖ · ‖ is |f |-integrable over L2(Q), that is,

∫
L2(Q) ‖α‖ d|f |(α) <∞. Then

the first variation δF (x|w) exists, belongs to S(Q) as a function of y and
is given by the formula

(2.5) δF (y|w) =

∫
L2(Q)

exp{i〈α, y〉} dfv(α),
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for s-a.e. y and w in C(Q), where fv is the measure in M(L2(Q)) defined
by

(2.6) fv(E) =

∫
E
i〈α,w〉 df(α)

for each E ∈ B(L2(Q)).

Proof. Using (1.12), we have

δF (y|w) =
∂

∂t

(∫
L2(Q)

exp{i〈α, y〉+ it〈α,w〉} df(α)
)∣∣∣
t=0

for s-a.e. y and w in C(Q). Now we obtain

(2.7) δF (y|w) =

∫
L2(Q)

i〈α,w〉 exp{i〈α, y〉} df(α),

provided we can justify interchanging the differentiation and the integral
sign. It suffices to show that

∫
L2(Q) |〈α,w〉| d|f |(α) < ∞ for s-a.e. w in

C(Q). But by Fubini Theorem and the integration formula (1.14), we
see that∫

C(Q)

∫
L2(Q)

|〈α,w〉| d|f |(α) dmY (w) =
( 2

π

)1/2 ∫
L2(Q)

‖α‖ d|f |(α)

which is finite by the assumption, and so
∫
L2(Q) |〈α,w〉| d|f |(α) <∞ for

s-a.e. w in C(Q) as desired. Finally, it is easy to see that δF (y|w) in
(2.7) can be rewritten as (2.5) and (2.6) and this completes the proof.

Taking further the first variations, we obtain the following corollary.

Corollary 2.4. Let n be a positive integer. Let F ∈ S(Q) be given
by (1.12) and assume that ‖ · ‖n is |f |-integrable over L2(Q). Then

δnF (·|w1) · · · (·|wn−1)(y|wn)

=

∫
L2(Q)

in〈α,w1〉 · · · 〈α,wn〉 exp{i〈α, y〉} df(α),
(2.8)

for s-a.e. y and w1, . . . , wn in C(Q).

Proof. By induction, it suffices to take n = 2 and prove that

δ2F (·|w1)(y|w2) =

∫
L2(Q)

i2〈α,w1〉〈α,w2〉 exp{i〈α, y〉} df(α),
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for s-a.e. y and w1, w2 in C(Q). Using (2.7), we have

δ2F (·|w1)(y|w2) =
∂

∂t
(δF (y + tw2|w1))|t=0

=
∂

∂t

(∫
L2(Q)

i〈α,w1〉 exp{i〈α, y〉+ it〈α,w2〉} df(α)
)∣∣∣
t=0

.

Now the result follows if we can show that
∫
L2(Q) |〈α,w1〉〈α,w2〉| d|f |(α)

is finite for s-a.e. w1, w2 in C(Q). But by Fubini Theorem and the
Yeh-Wiener integration formula, we see that∫

C(Q)2

∫
L2(Q)

|〈α,w1〉〈α,w2〉| d|f |(α) dm2
Y (w1, w2)

=
2

π

∫
L2(Q)

‖α‖2 d|f |(α)

which is finite by the assumption, and this completes the proof.

3. Relationships involving two concepts

In this section we establish various relationships involving exactly two
of the concepts the Fourier-Yeh-Feynman transform, the convolution and
the first variation of functionals in the Banach algebra S(Q) where each
operation is used only once. In view of Theorems 2.1 through 2.3 in
Section 2 above, all of the functionals in this section are elements of
S(Q) as a function of y.

We begin this section with two theorems relating Fourier-Yeh-Feynman
transform and convolution. In our first theorem, we restate a result in
[12].

Theorem 3.1 (Theorem 3.6 in [12]). Let F,G ∈ S(Q) be given as
in Theorem 2.2 and let 1 ≤ p <∞. Then for all nonzero real q,

(3.1) T (p)
q (F ∗G)q(y) = T (p)

q (F )
( y√

2

)
T (p)
q (G)

( y√
2

)
for s-a.e. y in C(Q). Also both of the above expressions are given by
the formula

(3.2)

∫
L2(Q)2

exp
{ i√

2
〈α+ β, y〉 − i

2q
‖α‖2 − i

2q
‖β‖2

}
df(α) dg(β).

Theorem 3.2. Let F,G, p and q be given as in Theorem 3.1. Then

(3.3) (T (p)
q (F ) ∗ T (p)

q (G))−q(y) = T (p)
q

(
F
( ·√

2

)
G
( ·√

2

))
(y)
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for s-a.e. y in C(Q). Also, both of the expressions in (3.3) are given by
the formula

(3.4)

∫
L2(Q)2

exp
{ i√

2
〈α+ β, y〉 − i

4q
‖α+ β‖2

}
df(α) dg(β).

Proof. The transforms T
(p)
q (F ) and T

(p)
q (G) are expressed as (2.1)

with corresponding measures ft and gt, where gt is given by (2.2) with f
replaced by g. Applying Theorem 2.2 to the expression (2.1) for F and
G, we obtain

(T (p)
q (F ) ∗ T (p)

q (G))−q(y) =

∫
L2(Q)

exp{i〈γ, y〉} dhc(γ),

where hc = h ◦ φ−1,

h(E) =

∫
E

exp
{ i

4q
‖α− β‖2

}
dft(α) dgt(β)

for E ∈ B(L2(Q)2) and φ is given as in Theorem 2.2. By the expression
(2.2) for ft and gt, we obtain (3.4).

On the other hand, by (1.12),

F
( x√

2

)
G
( x√

2

)
=

∫
L2(Q)

exp{i〈γ, x〉} dk(γ),

where k = l ◦ φ−1 and l(E) =
∫
E df(α) dg(β) for E ∈ B(L2(Q)2). Hence

by Theorem 2.1,

T (p)
q

(
F
( ·√

2

)
G
( ·√

2

))
(y) =

∫
L2(Q)

exp{i〈γ, y〉} dkt(γ),

where kt(E) =
∫
E exp{− i

2q‖γ‖
2} dk(γ) for E ∈ B(L2(Q)). Hence we

know that the right hand side also expressed as (3.4), which completes
the proof.

In the next two theorems, we obtain formulas involving Fourier-Yeh-
Feynman transform and the first variation of a functional F in S(Q).
In Theorem 3.3 below, we consider δF (y|w) as a function of y, while in
Theorem 3.5 below, we consider δF (y|w) as a function of w.

Theorem 3.3. Let F be in S(Q) be given by (1.12) and assume that
‖·‖ is |f |-integrable over L2(Q). Then for all 1 ≤ p <∞ and all nonzero
real q,

(3.5) T (p)
q (δF (·|w))(y) = δT (p)

q (F )(y|w)
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for s-a.e. y and w in C(Q). Also, both of the expressions in (3.5) are
given by the formula

(3.6)

∫
L2(Q)

i〈α,w〉 exp
{
i〈α, y〉 − i

2q
‖α‖2

}
df(α)

for s-a.e. y and w in C(Q).

Proof. Note that δF (y|w) is given by (2.5). By Theorem 2.1, we have

T (p)
q (δF (·|w))(y) =

∫
L2(Q)

exp{i〈α, y〉} d(fv)t(α)

for s-a.e. y and w in C(Q). By (2.2) we have

T (p)
q (δF (·|w))(y) =

∫
L2(Q)

exp
{
i〈α, y〉 − i

2q
‖α‖2

}
dfv(α)

and by (2.6), we have (3.6). On the other hand, by applying Theorem

2.3 to the expression (2.1) for T
(p)
q (F ), we see that the right hand side

of (3.5) is also expressed as (3.6).

Taking further variations of the expression given in (3.6), we obtain
the following corollary.

Corollary 3.4. Let n be a positive integer. Let F ∈ S(Q) be given
by (1.12) and assume that ‖ · ‖n is |f |-integrable over L2(Q). Then for
all 1 ≤ p <∞ and all nonzero real q,
(3.7)

T (p)
q (δnF (·|w1) · · · (·|wn))(y) = δnT (p)

q (F )(·|w1) · · · (·|wn−1)(y|wn)

for s-a.e. y and w1, . . . , wn in C(Q). Also, both of the expressions in
(3.7) are given by the formula

(3.8)

∫
L2(Q)

in〈α,w1〉 · · · 〈α,wn〉 exp
{
i〈α, y〉 − i

2q
‖α‖2

}
df(α),

for s-a.e. y and w1, . . . , wn in C(Q).

Theorem 3.5. Let F, p and q be given as in Theorem 3.3. Then

(3.9) T (p)
q (δF (y|·))(w) = δF (y|w)

for s-a.e. y and w in C(Q).
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Proof. For λ > 0, using the expression (2.7), we obtain

Tλ(δF (y|·))(w)

=

∫
C(Q)

δF (y|λ−1/2x+ w) dmY (x)

=

∫
C(Q)

∫
L2(Q)

i〈α, λ−1/2x+ w〉 exp{i〈α, y〉} df(α) dmY (x)

for s-a.e. y and w in C(Q). Since
∫
C(Q)〈α, x〉 dmY (x) = 0, Fubini

theorem enable us to conclude that

T (p)
q (δF (y|·))(w) =

∫
L2(Q)

i〈α,w〉 exp{i〈α, y〉} df(α).

By Theorem 2.3 we have (3.9).

In our next theorem we obtain a formula for the first variation of the
convolution.

Theorem 3.6. Let F and G be elements of S(Q) with corresponding
measures f and g in M(L2(Q)), respectively. Further, assume that ‖ · ‖
is |f | and |g|-integrable over L2(Q). Then for all nonzero real q

δ(F ∗G)q(y|w) =
i√
2

∫
L2(Q)2

〈α+ β,w〉 exp
{ i√

2
〈α+ β, y〉

− i

4q
‖α− β‖2

}
df(α) dg(β)

(3.10)

for s-a.e. y and w in C(Q).

Proof. Applying Theorem 2.3 to the expression (2.3) we obtain (3.10).

Next we obtain formulas involving convolution and the first variation.
In Theorem 3.7 below, we take the convolution with respect to the first
argument of the variation, while in Theorem 3.8 below, we take the
convolution with respect to the second argument of the variation.

Theorem 3.7. Let F,G and q be given as in Theorem 3.6. Then

(δF (·|w) ∗ δG(·|w))q(y)

=−
∫
L2(Q)2

〈α,w〉〈β,w〉 exp
{ i√

2
〈α+ β, y〉 − i

4q
‖α− β‖2

}
df(α) dg(β)

(3.11)

for s-a.e. y and w in C(Q).
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Proof. Applying Theorem 2.2 to the expression (2.5) for F and G,
we have the result.

Theorem 3.8. Let F,G and g be given as in Theorem 3.6. Then

(δF (y|·) ∗ δG(y|·))q(w)

=δF (y|w/
√

2) δG(y|w/
√

2)

+
i

2q

∫
L2(Q)2

(α, β) exp{i〈α+ β, y〉} df(α) dg(β)

(3.12)

for s-a.e. y and w in C(Q), where (α, β) denotes the inner product∫
Q α(s, t)β(s, t) ds dt. Also, both of the expressions in (3.12) are given

by the formula

(3.13) −1

2

∫
L2(Q)2

[
〈α,w〉〈β,w〉− i

q
(α, β)

]
exp{i〈α+β, y〉} df(α) dg(β).

Proof. Using the definition of the convolution, the equation (2.7) for
F and G, we see that for λ > 0

(δF (y|·) ∗ δG(y|·))λ(w)

=

∫
C(Q)

δF
(
y
∣∣∣w + λ−1/2x√

2

)
δG
(
y
∣∣∣w − λ−1/2x√

2

)
dmY (x)

=− 1

2

∫
C(Q)

∫
L2(Q)2

(〈α,w〉+ λ−1/2〈α, x〉)(〈β,w〉 − λ−1/2〈β, x〉)

· exp{i〈α+ β, y〉} df(α) dg(β) dmY (x)

for s-a.e. y and w in C(Q). But since
∫
C(Q)〈α, x〉 dmY (x) = 0 and∫

C(Q)
〈α, x〉〈β, x〉 dmY (x) = (α, β),

we have

(δF (y|·) ∗ δG(y|·))λ(w)

=− 1

2

∫
L2(Q)2

[
〈α,w〉〈β,w〉 − 1

λ
(α, β)

]
exp{i〈α+ β, y〉} df(α) dg(β)

by the Fubini theorem. Using Morera theorem, we can show that the last
expression has an analytic extension on C+ as a function of λ. Letting
λ→ −iq, we have expression (3.13). By (2.7), we obtain (3.12).
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4. Relationships involving all three concepts

In this section, we look at some of the relationships involving the
Fourier-Yeh-Feynman transform, the convolution and the first variation
where each operation is used exactly once. There are more than six
possibilities since one can take the Fourier-Yeh-Feynman transform or
the convolution with respect to the first or second argument of the first
variation. It turns out that there are 13 distinct formulas. Some of
these are given by equations (4.1) through (4.6). We omit the details of
the calculations used to obtain these equations because the techniques
needed are similar to those used above in Section 3. Of course the
remaining 7 formulas also can be obtained, and they are similar to the
formulas in Section 4 of [4, 13].

It is interesting to note that the left hand side of each formula (4.1)
through (4.6) involves all of the three operations, while the right hand
sides involve one or two of the three operations.

Throughout this section, let F and G be elements of S(Q) with corre-
sponding measures f and g in M(L2(Q)), respectively. Further, assume
that ‖ · ‖ is |f | and |g|-integrable over L2(Q). Let 1 ≤ p <∞ and let q
be a nonzero real number.

We begin with formulas for the first variation of the Fourier-Yeh-
Feynman transform of the convolution.

Formula 4.1. Taking the first variation of the expression in (3.1)
yields the formula

δ(T (p)
q (F ∗G)q)(y|w)) =T (p)

q (F )
( y√

2

)
δT (p)

q (G)
( y√

2
| w√

2

)
+ δT (p)

q (F )
( y√

2
| w√

2

)
T (p)
q (G)

( y√
2

)(4.1)

for s-a.e. y and w in C(Q).

In Formula 4.2 below, we take the Fourier-Yeh-Feynman transform
with respect to the first argument of the first variation of the convo-
lution, while in Formula 4.3 below, we take the Fourier-Yeh-Feynman
transform with respect to the second argument of the first variation of
the convolution.
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Formula 4.2. Applying Theorem 3.3 to (F ∗ G)q and Formula 4.1
yields the formula

T (p)
q (δ(F ∗G)q(·|w))(y)

=T (p)
q (F )

( y√
2

)
δT (p)

q (G)
( y√

2
| w√

2

)
+ δT (p)

q (F )
( y√

2
| w√

2

)
T (p)
q (G)

( y√
2

)
(4.2)

for s-a.e. y and w in C(Q).

Formula 4.3. Applying Theorem 3.5 to (F ∗G)q yields the formula

(4.3) T (p)
q (δ(F ∗G)q(y|·))(w) = δ(F ∗G)q(y|w)

for s-a.e. y and w in C(Q).

In the following Formula 4.4, we obtain formulas for the Fourier-Yeh-
Feynman transform of (δF (·|w) ∗ δG(·|w))q(y) with respect to y.

Formula 4.4. Applying Theorems 3.1 and 3.3 yields the formula

T (p)
q ((δF (·|w) ∗ δG(·|w))q)(y)

=T (p)
q (δF (·|w))

( y√
2

)
T (p)
q (δG(·|w))

( y√
2

)
=δT (p)

q (F )
( y√

2
|w
)
δT (p)

q (G)
( y√

2
|w
)(4.4)

for s-a.e. y and w in C(Q).

In the following Formula 4.5, we obtain formulas for the Fourier-Yeh-
Feynman transform of (δF (y|·) ∗ δG(y|·))q(w) with respect to w.

Formula 4.5. Applying Theorems 3.1 and 3.5 yields the formula

T (p)
q ((δF (y|·) ∗ δG(y|·))q)(w)

=T (p)
q (δF (y|·))

( w√
2

)
T (p)
q (δG(y|·))

( w√
2

)
=δF

(
y| w√

2

)
δG
(
y| w√

2

)(4.5)

for s-a.e. y and w in C(Q).

In the following Formula 4.6, we obtain formula for the convolution
with respect to the first argument of the first variation of the Fourier-
Yeh-Feynman transform.
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Formula 4.6. Applying Theorems 3.2 and 3.3 yields the formula

(δT (p)
q (F )(·|w) ∗ δT (p)

q (G)(·|w))−q(y)

=(T (p)
q (δF (·|w)) ∗ T (p)

q (δG(·|w)))−q(y)

=T (p)
q

(
δF
( ·√

2
|w
)
δG
( ·√

2
|w
))

(y)

(4.6)

for s-a.e. y and w in C(Q).
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